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On the evaluation of the meshing stiffness of external spur gears 
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Abstract. A comparison among different approaches of the meshing stiffness of spur gears has been 
carried out. The influence of each one on the load sharing, and subsequently on the determinant tooth-root 
and contact stresses, has also been studied. Equations for the evolution of the meshing stiffness along the 
path of contact according to all these formulations are also provided. 

1 Introduction 
Methods for the evaluation of the load carrying capacity 
in gear rating standards [1, 2] are usually based on 
simple models of the theory of elasticity -Hertzian 
contact stress, Navier‟s bending stress, etc.-, which are 
applied to the critical load conditions to provide the 
determinant contact and tooth-root stresses. However, 
the determinant stresses and critical load conditions 
depend on the transmitted load at any meshing position, 
and consequently on the load sharing among couples of 
teeth in simultaneous contact. As the load sharing is 
governed by the evolution of the meshing stiffness (MS) 
along the path of contact, a reliable evaluation of the MS 
is essential for accurate calculation of the load carrying 
capacity. 

Many studies on the calculation of the MS of spur 
gear pairs, including analytical methods and finite 
element (FE) simulations, can be found in literature [3-
6]. All of them result in a symmetric -or almost 
symmetric- curve of MS respect to the midpoint of the 
interval of contact, with a maximum at this point. But the 
procedures, both the definition of the FE models and the 
development of the numerical calculations, are always 
tedious and time-consuming. The authors [7-9] presented 
an approximate equation, of high accuracy and very 
simple formulation, which expresses the MS as a 
function of the contact ratio, exclusively. It was useful 
for strength calculations because the analytic formulation 
allowed to compute the critical bending and contact 
stresses by means of simple mathematical procedures 
[10-13]. The equation was initially obtained from the 
bending, shear and compressive stiffnesses [7-8]; and it 
was later modified to consider the Hertzian contact 
stiffness as well [9]. 

However, the discussion on the components of the 
MS is still open. Some authors [3, 14] recommend the 
Weber-Banaschek approach [15] for the contact 
stiffness, better than the Hertzian one; other authors [16] 
consider that the gear body stiffness can not be 
neglected. In this work, different MS approaches, 
corresponding to combinations of different 

recommendations for the MS components, are compared. 
The load sharing ratio (LSR) curves obtained from each 
approach are also compared and their influence on the 
determinant stresses are discussed. Values for two 
coefficients fitting the approximate equation to each MS 
approach are also provided. 

2 Stiffness components 
The single stiffness is defined as the stiffness of a tooth 
pair in contact, i.e., the relation between the load at the 
tooth pair and its deflection. The meshing stiffness at a 
given contact position will be the sum of the single 
stiffness of each tooth pair in contact at the given 
position. The single stiffness KM is the serial 
composition of several components: the bending 
stiffness kx, the shear stiffness ks, and the compressive 
stiffness kn, all of them of both mating teeth; the gear 
body stiffness kR, also in both teeth; and the contact 
stiffness kH. It can be expressed as follows: 
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The bending, shear and compressive stiffnesses can 
be computed from the equations of the linear theory of 
elasticity. Formulas can be found in [7-9, 14, 15]. Weber 
and Banaschek [15] developed equations for the gear 
body stiffness and the contact stiffness, which have been 
widely used [14]. Nevertheless, the contact stiffness 
equation has not been completely accepted. It was 
obtained from the hypothesis of planar deformation state, 
which implies the presence of a normal stress along the 
third main direction, which is very unclear. In addition, 
to integrate the Beltrami‟s equations, the centrelines of 
both teeth are assumed to remain undeflected, which is 
not easy to accept. This results in an overestimation of 
the contact deflection, which should be smoothed. 
KissSoft [14], for example, recommends considering the 
50% of the Weber-Banaschek contact deflection for 
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calculations. This reduction results in a MS curve quite 
similar to that considering the Hertz equation for the 
contact stiffness, though some authors and researchers 
consider the Hertzian approach not to be accurate 
enough to describe the dynamic behaviour of the teeth in 
contact. Finally, the Weber-Banaschek approach for the 
gear body stiffness does not account the rim thickness 
and thus the equation does not describe the MS of thin-
rimmed gears accurately. 

In this work, several approaches for the MS, obtained 
by combination of different components, are compared. 
The considered combinations are presented in Table 1. 
The influence of each one on the prediction of the load 
sharing is also discussed. Finally, a set of coefficients to 
fit the approximate equation to each MS approach is 
provided, including a study of accuracy of the 
corresponding LSR curves. 

3 Meshing stiffness and load sharing 
ratio 

The meshing stiffness can be computed from the 
equations presented in [7-9, 15], and can be expressed as 
a function of the contact point parameter , which 
describes the meshing position along the path of contact 
and is defined as [7-9]: 
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where z is the number of teeth, rc the radius of the 
contact point at the involute profile, rb the base radius, 
and subscript 1 denotes the pinion. Figure 1 presents the 
curves of MS according to six considered approaches for 
a specific spur-gear pair. All of them have a very similar 
shape, with a maximum at the midpoint of the path of 
contact, and symmetric branches at both sides of this 
midpoint. MS curves obtained by FE simulations or 
experimental tests [3, 14] have also the same aspect. 

From the values of the MS, the load sharing ratio R 
can be expressed as: 
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where Fi is the load at tooth pair i, FT the total load, and 
the sum is extended to all the toot pairs in simultaneous 
contact. If considered KM () = 0 outside the interval of 
contact, the LSR can be also expressed as a function of  
along the path of contact, namely: 
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because it can be easily proved that: 

 1 1i i     (5) 

3.1 Standard contact ratio spur gears 

Figure 2 presents the curves of LSR corresponding to six 
considered approaches of MS, for the same specific 
spur-gear pair of Fig. 1, with contact ratio  between 1 
and 2. It is observed that there are non-neglectable 
differences among the MS approaches: while the LSR 
along the interval of shared load fluctuates between 0.34 
and 0.66 for approach I, for approach V fluctuation 
occurs between 0.42 and 0.58. Specifically, the interval 
of fluctuation is longer for higher values of the MS, and 

Table 1. Components of MS approaches.  

Approach 
code 

Bending 
Shear 

Compressive 
Contact Gear body 

I 
II 
III 
IV 
V 
VI 

C 
C 
C 
C 
C 
C 

(-) 
H 

WB 
H 

WB 
50% WB 

(-) 
(-) 
(-) 
C 
C 
C 

C / (-): considered / neglected. 
H / WB: Hertzian / Weber-Banaschek approach. 

 
 

Fig. 1. Curves of MS according to approaches I to VI. 
 

 

 
Fig. 2. Curves of LSR according to MS approaches I to VI. 
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vice-versa. Obviously, high values of the MS correspond 
to approach I, while the lowest value correspond to 
approaches IV, V and VI. Note that diagram in Fig. 1 
represents „normalized‟ values of the MS, (KM /KMmax), 
because according to Eqn. (4) the value of KMmax is not 
necessary to compute the LSR. However, it is very clear 
that KMmax-IV or KMmax-V are smaller than KMmax-I. 

These discrepancies do not have significant influence 
on the determinant stresses and load carrying capacity. 
The critical load conditions for pitting usually 
correspond to contact at the inner point of single tooth 
contact [1, 2, 10], while for tooth bending, critical load 
conditions always correspond to contact at the outer 
point of single tooth contact [1, 2, 11]. In both cases the 
LSR is equal to 1 for all the approaches. 

More significant may be these discrepancies for 
specific cases in which the determinant contact stress 
occurs at the inner point of contact; typically for small 
number of teeth on pinion and high gear ratio. In these 
cases, discrepancies up to 10% in the estimation of the 
nominal contact stress will be obtained. Figure 3 
presents the evolution of the contact stress along the path 
of contact for a spur gear with relatively small number of 
teeth on pinion (namely, 20) and determinant contact 
stress at the inner point of contact, computed from six 
considered approaches. In general, discrepancies will be 
smaller than 10% because the most rigid MS approaches 
(approaches I and II) will shift the critical contact stress 
to the inner point of single tooth contact, as shown in 
Fig.3. 

3.2 High contact ratio spur gears 

For spur gears with contact ratio between 2 and 3 –hence 
forward high contact ratio (HCR) spur gears– 
discrepancies may be greater that that in the previous 
case. Figure 4 presents the curves of MS according to the 
considered approaches, for a HCR spur pair with  = 
2.12. All of them are quite similar to those in Fig. 1, 
corresponding to standard contact ratio (SCR) spur pairs. 

Nevertheless, discrepancies in the estimation of the 
LSR are quite more significant. As shown in Fig. 5, 
differences between approaches I and V in the estimation 

of the LSR at the limits of the intervals of two pair tooth 
contact are around 0.10, which means discrepancies of 
around 20% in the estimation of the load. 

Determinant contact stress in HCR spur gears may 
arise at the inner point of contact or at the inner limit of 
the inner interval of two pair tooth contact [12]. In both 
cases, differences in the estimation of the nominal 
contact stress will be around 10% - 12%. 

Critical load conditions for bending strength 
correspond to contact at a point of the outer interval of 
two pair tooth contact, usually contained between the 
inner point and the midpoint of the interval [13]. For 
critical load conditions at the midpoint of the interval, all 
the MS approaches will provide identical results, as 
easily derived from Fig. 5. For critical load conditions at 
the inner point of the interval, discrepancies between 
approaches I and V may be up to 20%. 

The suitability for each approach to describe the MS 
of a specific spur gear transmission will depend on the 
material, speed, and geometry of the gear cube. As said 
above, Approaches I, II and III, which do not consider 
the gear body stiffness -equivalent to consider rigid 
body- will be appropriate for solid gears, while 
approaches IV, V and VI will be more accurate for thin-
rimmed gears. 

 
Fig. 3. Determinant contact stress at the inner point of contact. 
 

 
Fig. 4. Curves of MS approaches I to VI for HCR spur gears. 
 

 
Fig. 5. Curves of LSR for HCR spur gears according to 
approaches I to VI. 
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Nevertheless, this discussion is not the aim of this 
work. Probably, all the approaches will be suitable for 
specific gearing conditions, thus all of them should be 
considered for design. However, the calculation of the 
MS components is always tedious and time-consuming, 
which becomes a serious problem for repetitive 
calculations, as usually required in early design stages. 
In addition, simple formulations of the MS will be useful 
for optimization studies or complicated calculations of 
friction power losses, lubrication conditions, etc. 
In the next section, analytic approximate equations for 
each approach of MS are provided. A study of accuracy 
of each equation is also presented. 

4 Approximate equations for the 
meshing stiffness 

From Figs. 1 and 4, the evolution of the MS along the 
path of contact can be accurately represented by a cosine 
function for all the approaches: 

    max 0cosM M mK K b       (6) 

where m is the contact point parameter corresponding to 
the midpoint of the path of contact: 

 
2 2m inn o
  

       (7) 

in which subscripts inn and o denotes the inner and outer 
points of contact, respectively. 

The coefficient b0 can be calculated by accounting 
that the values of the LSR of SCR spur gears, at the 
inner and outer points of the path of contact -and thus at 
the inner and outer points of the interval of single tooth 
contact- are almost uniform for any values of the 
geometrical parameters of the transmission. Figure 6 
shows the values of the LSR at inner and outer points of 
both the interval of contact and the interval of single 
tooth contact, for 3775 different combinations of 
geometrical parameters, according to one of the 
approaches of the MS. Average values of LSR at 
singular points of the path of contact for all the 
approaches are given in Table 2. 

According to Eqns. (3) and (6), the LSR at the outer 
point of contact can be expressed as follows: 
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If assumed that the cosine can be approximated to the 
first three terms of the McLaurin series, from Eqn. (8) 
the coefficient b0 can be approximately expressed as: 
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where Ro is the LSR at the outer point of contact, i.e., Ro 
= R(o). However, due to the considered approximation 

for the cosine function, this value of b0 and Eqn. (8) 
provide a value of R(o) slightly greater than the initial 
Ro, introduced in Eqn. (9). This problem can be solved 
by introducing in Eqn. (9) an initial Ro slightly smaller 
than R(o). Table 3 shows the adjusted values of Ro used 
for calculation of b0 for six considered approaches, and 
the obtained values of coefficients 1 and 2, which are 
given by: 
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in such a way that: 

 
Fig. 6. Values of the LSR at four singular points of the path of 
contact for SCR spur gears, according to approach V. 

Table 2. Average values of LSR at singular points.  

 
Approach 

I II III IV V VI 

R(inn) 0.338 0.361 0.419 0.388 0.421 0.404 

R(o–1) 0.664 0.641 0.578 0.612 0.577 0.595 

R(inn+1) 0.662 0.639 0.581 0.612 0.579 0.596 

R(o) 0.336 0.359 0.422 0.388 0.423 0.405 

Table 3. Coefficients 1 and 2.  

 
Approach 

I II III IV V VI 

Ro 0.316 0.344 0.414 0.379 0.417 0.397 

1 0.86 1.11 2.40 1.56 2.50 1.92 

2 0.80 1.17 4.07 2.00 4.38 2.81 
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5 Accuracy of the approximate 
equations 

For each approach, the accuracy of the approximate 
equation has been studied. 3775 different cases have 
been considered, obtained from the 4000 possible 
combinations of the following geometrical parameters, 
but regardless combinations resulting in undercut pinion 
profile: 

 Number of teeth on pinion, z1: 20, 30, 40 and 50. 
 Number of teeth on wheel, z2: 60, 70, 80 90 and 100. 
 Pressure angle, n: 18º, 19º, 20º, 21º, 22º, 23º, 24º, 

25º. 
 Rack shift coefficient on pinion, x1: -0.1, -0.05, 0, 

0.05, 0.1. 
 Rack shift coefficient on wheel, x1: -0.1, -0.05, 0, 

0.05, 0.1. 

For each combination, the different components of 
the MS in Eqn. (1) are computed by calculation [7-9, 15] 
at 101 points of the path of contact. Considering the 
appropriate components for each approach, the 
numerical values of the MS, KM-num, at 101 contact 
positions are calculated from Eqn. (1). The numerical 
values of the LSR, Rnum, at the same 101 contact 
positions are calculated from Eqn. (4). 

Both numerical functions, KM-num and Rnum, have been 
compared with approximate function of MS given by 
Eqns. (6), (10) and (11), and approximate function of 
LSR given by Eqn. (4) with approximate values of KM. 
For each function, MS and LSR, the following 
parameters have been calculated: 

 The maximum error at the inner and outer points of 
the path of contact. 

 The maximum error along the complete path of 
contact. 

 The adjusted R2-factor. 

The highest maximum errors and the maximum and 
minimum adjusted R2-factor among 3775 considered 
combinations, are given in Table 4 for approaches I to 

VI. These results prove the accuracy of the approximate 
equations, fully acceptable for strength calculations. 

6 Conclusions 
Different approaches of the meshing stiffness, 

considering Hertzian or Weber-Banaschek contact 
stiffness, and accounting or neglecting the gear body 
stiffness, have been studied. The load sharing ratio and 
the consequent critical tooth-root and contact stresses, 
according to each approach, have been compared. 

An approximate equation for the meshing stiffness, 
expressed as a function of the contact ratio exclusively, 
previously developed by the authors, has been 
generalized to fit to the other approaches. Values for the 
changing coefficients for all the considered approaches 
have been provided. 

A study of accuracy of the modified equations has 
been carried out, revealing very good fits between 
corresponding numerical meshing stiffness curves, with 
small estimation errors, and even better fit between load 
sharing ratio curves. 

The procedure to compute the coefficients of the 
approximate equation for all the approaches is also 
presented. This procedure would be perfectly valid to 
calculate new coefficients for any other possible 
approach, even to approximate meshing stiffness curves 
obtained from other techniques, as finite element 
analyses. 
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