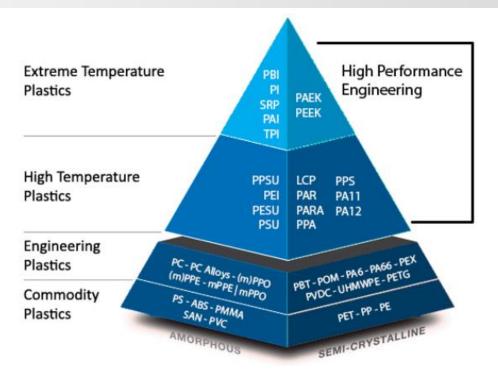
Plastic Gears

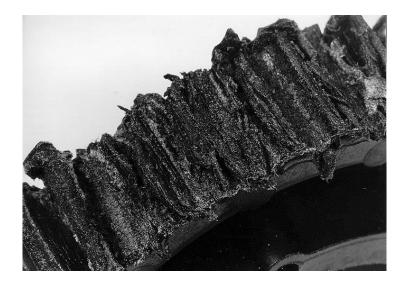

An overview and introduction Dr. Aljaz Pogacnik, Senior Engineer and Plastic Gear Specialist, KISSsoft AG

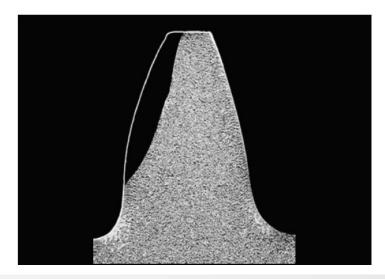
KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

Plastic gears – Introduction

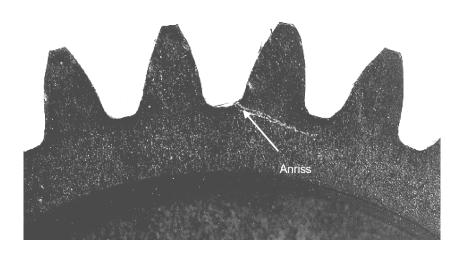
Advantages

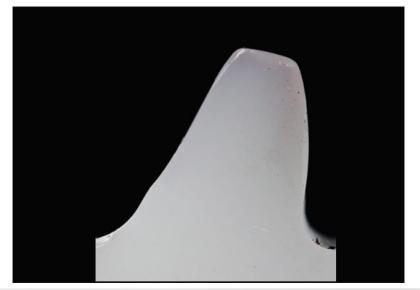
- Low mass and inertia
- No lubrication required
- Corrosion resistance
- Sound and vibration damping
- Lower cost for serial production
- Design freedom


SOURCE: http://polymers.com.au/thermoplastics/, 9.6.2017.


Drawbacks

- Inferior mechanical properties
- Inferior thermal properties
- Lower manufacturing tolerances
- Lower operating temperatures
- Moisture absorption

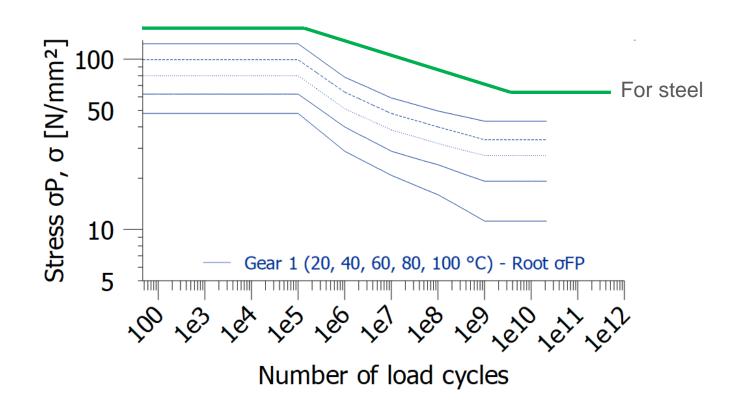

KISSsoft


Failure modes

SOURCE: Rösler J.: Zur Tragfähigkeitssteigerung thermoplastischer Zahnräder mit Füllstoffen, Diss. TU Berlin 2005.

Guidelines and data for the design of plastic gears in KISSsoft:

1981 - 1996	Guideline VDI 2545 (PA12, PA66, POM)
1996 - 2008	Nothing valid
2008	Material data measured by Victrex, Sabic, DSM
2013	Guideline VDI 2736


Required data for the calcualtion

- **Poisson ratio** and **elasticity modulus** (temperature dependent)
- Static strength calculation: **Yield** and **ultimate** tensile strength (temperature dependent)
- Wear calculation: **Wear factor** (material combination, lubrication, ...)
- Temperature calculation: **Coefficient of friction** (material combination, lubrication, ...)
- Lifetime calculation: **S-N curves** for root and flank (temperature dependent)
- Other: Coefficient of thermal expansion, water absorption, ...

Material data – S-N curves (Wöhler line)

- S-N curves strongly depend on the actual root/flank temperatures
- S-N curves required as a function of temperature
- Measuring the S-N curves is very time consuming and expensive

Overview of the current materials in the KISSsoft database

OPEN SOURCE: 34 general materials (PA6, POM, PA46, ...)

- from standards and industry measurements
- from plastics manufacturers (Kuraray, DuPont, ...)

00

ON REQUEST: 33 specific materials

- 22 from Sabic Innovative Plastic
- 5 from Alcom (no fatigue data available)
- 3 from DSM Performance Material
- 1 from Victrex
- 1 from DuPont

Summary

Open source:	34 materials
On request:	33 materials
Total:	67 materials
Root fatigue:	41 materials
Flank fatigue:	10 materials
Wear data:	44 materials

90										
80										
07 <u>al</u>										
09 ateri							-			
stic m	 				-				-	
Number of plastic materials 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			_							
06 Jper			_							
un ₂₀	 -		_		-				-	
10					-					
0										
	2016	5	2017	,	2018	3	2019	1	2020	
				KISSs	oft re	elease				

10491	170 0466 (1)(012726)
10491	179 PA66 (VDI2736)
	180 POM (VDI2736)
10493	181 PBT (VDI2736)
10494	182 PET (VDI2736)
10495	183 PA46 (VDI2736)
10496	184 PEEK (VDI2736)
10500	185 Laminated fabric
10510	186 PA 12 (VDI2545)
10531	187 Hostaform C9021G (Celanese) POM
10540	188 Laminated wood
19001	189 PEEK (Victrex)
19151	190 LUBRICOMP UCL-4036A HS/UCL36AS
19152	191 LUBRICOMP UFL-4036A HS/UFL36AS
19153	192 THERMOCOMP UFM-3249HSS/UFW49RS
19154	193 LUBRICOMP KA/KA000M
19155	194 LUBRICOMP KL-4040/KL004
19156	195 LUBRILOY R/R2000
19157	196 LUBRICOMP DFL-4036/DFL36
19158	197 LUBRICOMP EFL-4036/EFL36
19159	198 LUBRICOMP OFL-4036/OFL36A
19160	199 LUBRICOMP OCL-4036/OCL36A
19161	200 LUBRICOMP RFL-4036/RFL36
19162	201 VERTON RFL-8029/RVL29ESS
19163	202 LUBRICOMP WFL-4036/WFL36
19164	203 LUBRICOMP LCL-4033/LCL33
19165	204 LUBRICOMP DL-4020FR/DL0029E
19166	205 LUBRICOMP WL-4040/WL004
19167	206 LUBRICOMP RL-4040/RL004
19168	207 LUBRICOMP RFL-8036/RVL36
19169	208 LUBRICOMP ECL-4036/ECL36

VDI 2736 is the most recent calculation method for plastic gears. It is a guideline and not a standard!

It consists of 4 parts:

VDI 2736, Part 1: General recommendations, material properties, drawingsVDI 2736, Part 2: Strength assessment of cylindrical gearsVDI 2736, Part 3: Strength assessment of worm gears (crossed helical gears)VDI 2736, Part 4: Measurements of material properties

Possible calculations:

- An approximate rough calculation for cylindrical gears
- Calculation of temperatures
- Calculation of fatigue failure (root, flank)
- Calculation of wear
- Calculation of static failure
- Calculation of deformation
- Calculation of **shear** (for crossed helical gears)
- Calculation of efficiency (for crossed helical gears)

Possible fatigue safety factors for different modules are shown in the table below

Module m	Root	Flank	Wear	Deformation
m ≥ 2.0	1.4	1	1.0	1.1
m = 1.0	1.2	0.9	1	1.1
m ≤ 0.5	0.6	0.6	1	1.1

- Inbetween, linear interpolation is used.
- Possible static safety factors are shown in the table below (VDI 2736)

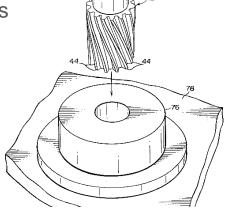
		Safety factor	_
	Yield strength	ı 1.5	
	Ultimate streng	th 2.0	-
Calcul Metl		xperience now how)	= Optim Result

Required safety factors

An important note concerning the use of data from the existing design

- If the existing design is over dimensioned, then also the new design will be over dimensioned!
- We recommend therefore, that if you test a gearbox on the test rig and if the required life time is achieved without any problem, to repeat the test with a higher load.
- If with the higher torque failure of the gears occurs after a certain number of hours X, this is exactly the information you are looking for: Repeat the calculation with the higher torque and lifetime X and you will get exactly the minimum required safety factors!

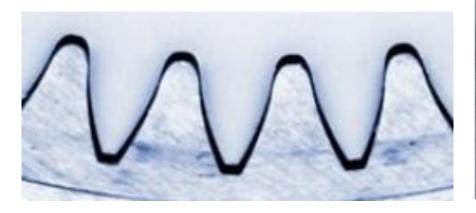
Wear calculation methods in KISSsoft – method A (with iteration)



Tooth Form

Tooth form

- For plastic and sinter gears, tooth form is not limited by the classic manufacturing processes
- "Any" tooth form can be produced without additional costs (wire erosion, ...)
- For instance, by adding material at the root (full rounding, elliptical root modification), root strength can be improved
- High deformations of the plastic gear teeth must be compensated with modifications (usually long tip relief)
- Usually no flankline modifications



Modifications for mold making – General

- Shrinkage of plastic materials
- Different in radial and circumferential direction
- Different at root and tip
- Effect of injection points
- Expansion of sintered materials*

SOURCE: www.kleissgears.com

Operating backlash and Tolerances

Backlash calculation – Use in KISSsoft

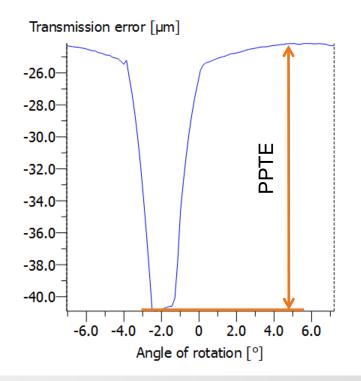
In KISSsoft, all three backlash calculations are available:

- **Theoretical backlash** (always calculated, documented in general report)
- Acceptance backlash
- **Operating backlash** (most relevant for plastic gears)

The Acceptance Backlash and the Operating Backlash are calculated in the tab "Operating Backlash" as shown below.

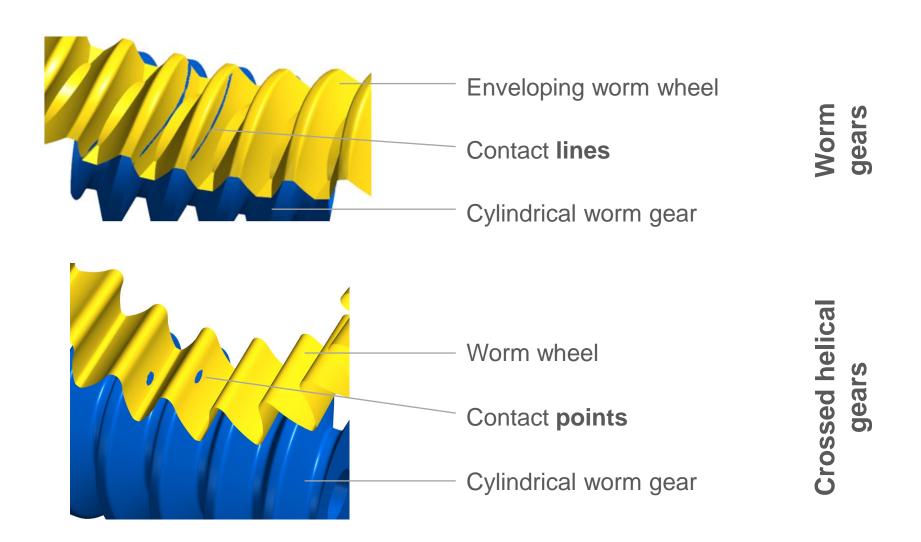
Basic data	Reference profile	Tolerances Rat	ing F	actors	Operating backlash								
Influences du	ue to inaccuracy at ma	nufacturing											
Consider	axis deviation error							Accuracy class of axis alignme	ent according to	ISO 100	54		•
Consider	Consider manufacturing error according to DIN 3967 Accuracy class Q 6												
Consider	Consider runout error Distance between bearings L _G 40.0000 mm												
Runout error	r (Gear 1/Gear 2)	14.0000		16.0000 µm									
Influences du	uring operation												
Temperature	e range housing (min/n	nax)	Tc	30.0	0000 50.000	0 °C	2	Relative water absorption during swelling	Wvol1	0.0000	Vol%	✓ fiber-reir	nforced
Temperature	e range gears (min/ma	x)	TR	30.0	0000 50.000	0 °C	2	Relative water absorption during swelling	WVol2	0.0000	Vol%	fiber-reir	nforced
Permissible t	temperature difference	e T _R -T _C (min/max)	Tarr	-40.0	40.000	0 °C	: 📋	Reference temperature	Tref	20.0000	°C		
Housing material EN-GJL-200 (GG 20), Cast iron flake graphite, untreated, ISO 6336-5 Figure 3c/4c (MQ)													
Label													
Coefficient of	f thermal expansion fo	r housing a _c	1	11.7000 1E-6	5/°C								

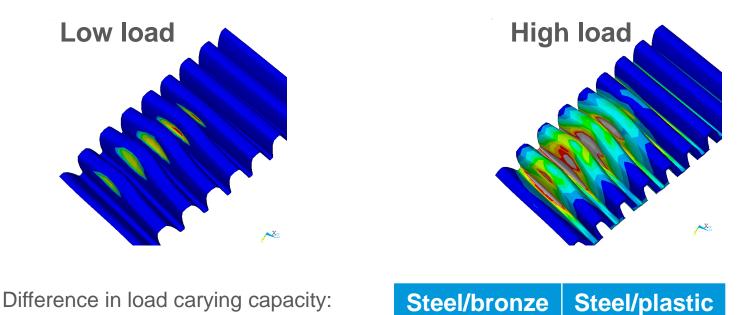
Backlash calculation – Operating backlash


For the calculation of the **operating backlash**, the following is considered

- Acceptance backlash
- Effects changing the centre distance and tooth thickness
 - Housing temperature change
 - Housing water absorption (Not included)
 - Housing material
 - Gears temperature change
 - Gears water absorption

Transmission error is the amount by which the contact point is displaced on the path of contact (length at path of contact) in μm . This is an outcome of varying contact stiffness. The amplitude of the transmission error is a decisive criterion in determining how quietly a gear unit runs.


(PPTE = Peak to Peak Transmission Error)


Crossed helical gears

As the load increases, the contact **point** extends to a contact **ellipse**. Running in wear also helps to increase the contact surface.

*Due to running in, flank pressure lowers and conditions become similar to globoidal worm gears

1:4

SOURCE: Barton, P.: Tragfähigkeit von Schraubrad- und Schneckengetrieben der Werkstoffpaarung Stahl/Kunststoff, Ruhr Universität Bochum, Deutschland, 2000.

1.0 : **1.2***

VDI 2736-3 – General

Limitations for the geometry:

- Material combination metal worm/plastic worm wheel
- Shaft angle Σ of 90°
- $m \ge 0.3 \text{ mm}, Z_{worm} < 6 \text{ (better efficiency, strength)}$

Possible calculations

- Tooth **root** load-carrying capacity (shear strength)
- Tooth **flank** load-carrying capacity
- Efficiency

VDI 2545 – General

- VDI 2545 has no calculation for crossed helical gears
- KISSsoft adapted the calculation, so that it can also be used for crossed helical gears
- Also possible for plastic/plastic combinations
- Possible calculations
 - Tooth root load-carrying capacity
 - Tooth flank load-carrying capacity

General remarks: calculated safety factors could be too low, depending on the elongated eliptical contact under load or wear.

Wear – According to Pech

- Wear calculation of the plastic **worm gear** according to Pech
- Calculation of **plastic deformation**, wear intensity and total wear (in the normal section at the operating pitch circle diameter).
- Calculation of **COF**, efficiency, lubricant and gear temperatures
- The following limitations apply for the calculation:
 - Shaft angle of 90°
 - Grease lubrication
 - Material of worm: steel
 - Material of worm gear: POM, PEEK, PEEK+30% CF or PA46

GEAR 8.457 85.000 10.051 49.162

Driving gear: worm

4a. Wear according to Pech

		GEAR
Plastic deformation (µm)	[Xpln]	8.457
Permitted plastic deformation (µm)	[XpIn0]	85.000
Safety against deformation	[SPdef]	10.051
Running-in wear (µm)	[ðW0n]	49.162
Wear intensity (µm/mm)	[JwP]	1.005e-006
Wear removal (mm)	[ðWn]	0.107
Permissible wear removal (tooth tip) (mm)	[ðWnp0]	2.650
Safety against wear (tooth tip)	[SWPs]	24.718
Permissible wear removal (permitted backlash) (mm)		
	[ðWnf0]	0.510
Safety against wear (permitted backlash)	[SWPf]	4.757

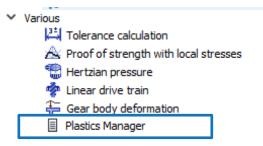
GEOMETRY LIMITS							
Number of teeth: worm gear	$16 \le Z_2 \le 80$						
Centre distance	10 mm ≤ <i>a</i> ≤ 80 mm						
Axial module: worm gear	0.5 mm ≤ <i>m</i> _x ≤ 3 mm						
Gear ratio	10 ≤ <i>u</i> ≤ 80						
Pressure angle	$10 \le \alpha_n \le 22^\circ$						
Profile shift coefficient: worm gear	$-0.2 \le x_2 \le 1.5$						

SOURCE: Pech M.: Tragfähigkeit und Zahnverformung von Schraubradgetrieben der Werkstoffpaarung Stahl/Kunststoff, Lehrstuhl für Maschinenelemente, Getriebe und Kraftfahrzeuge, Bochum, 2011.

Plastics Manager

General

Located under various


Functionality

- Adding new plastic materials to the KS database
- Automatic generation of the corresponding DAT files

If fatigue data from gear testing is available

- Calculation of permissible tooth root/flank stresses for different lubrication regimes
- Statistical evaluation of cycles to failure
- 2 calculation cases possible
- Identical test gears for all tests (testing on the test bench)
- Different test gears used (Z12, Z14, Z15, Z16) mainly testing in actual applications

Possible to calculate wear factors and heat transfer coeffcients acc. to the VDI 2736

Thank you for your attention!

Sharing Knowledge

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

