KISSsoft

Reseller Meeting 2017 - Bevel Gear Modification Sizing

Inho Bae, Ph.D., Head of Support KISSsoft AG

Layout Process of a Gear Set

TARGETS

- Optimal load distribution
- Manufacturing error compensation
- Lower noise, vibration, loss, ...
- Higher safety of scuffing, (micro)pitting, ...

Modification Sizing Process

INPUT

- Operating conditions (power, speed, ...
- Macro geometry
- Shafts / Housing deformation

MODIFICATION SIZING

- Partial load levels
- Combination of modifications

- OUTPUT
- PPTE
- Maximum Hertzian stress
- Maximum root stress
- Maximum contact temperature

 Select Calculation > Modifications sizing or Click the sizing icon

Main calculation should be consistent

CONSISTENT

Where is the Modification Sizing used / What for ?

• Settings in contact analysis tab are used (except the partial load settings)

Basic data Manufacturing Reference profile Tolerances Modifications	Rating Factors 🔀 Contact analysis
Contact data	Axis alignment
Gear 1 - Gear 2	Axis alignment
Coefficient of friction µ 0.0500	
Contact analysis	
Accuracy of calculation medium -	
Partial load for calculation wt 100.0000 % Consider load spectrum	
\Box Load distribution calculated with: $K_{\gamma}\cdot K_{A}\cdot T_{nom}$, Axis alignment calculated with: $K_{\gamma}\cdot K_{A}\cdot T_{nom}$	A

- Set the proper accuracy of calculation to reduce the computation time
- Shaft / Housing deformation can be included from Axis alignment window

I	K Define axis alignment				×
	Axis alignment To	rsio	1		
	Gears		Gears mounted by interference fit, with stiffness according to ISO 6336-1 $$ $$		
	File shaft Gear 1		Pinion shaft for BevelGear 6a (Straight, Fig 1).W10	\checkmark	🛨
	V misalignment (E)	Δ٧	67.7336	μm	1
	H misalignment (P)	ΔН	-17.7926	μm	
	J misalignment (G)	ΔJ	8.4944	μm	
	Shaft angle deviation	ΔΣ	0.0000	0	
	File shaft Gear 2		Gear shaft for BevelGear 6a (Straight, Fig 1).W10	\checkmark	+
			0	К	Cancel

Available Modification Types for Bevel Gear

- Profile crowning (Barreling) space coth space tooth tooth LAE tooth root root Positive Negative
 - Eccentric profile crowning •

•

Factor 1	Factor 2
$L_{Ax} = (d_A - d_x)/(d_A - d_E)$	$C_{\alpha a}/C_{\alpha f}$

Pressure angle modification ۲

Helix angle modification (conical) •

Crowning / Eccentric crowning •

Twist .

Mod	ifications si	zing								—		×	
Condi	itions I	Conditions II	Resu	Ilts Graphic I Graphic II	I								
No.	Gear	Synchronize	Flank	Type of modification	Number of steps	Value (min)	Value (max)	Facto	r 1 (min)	Facto	or 1 (ma	x)	
1	Gear 1	1	both	Profile crowning (barreling)	3	10.0000	20.0000			Trial	value	s = [′	10, 15, 20]
2	Gear 1	2	both	Crowning	3	20.0000	40.0000						
3	Gear 2	3	both	Profile crowning (barreling)	3	10.0000	20.0000						
	K Wa	rning					×						
	<u>.</u>	Attention The num to calcula -number	: ber of ite the of par	possible solutions, and t m depends on: tial loads dification steps	herefore also th	e time requ	ired						
		-number The calcu Do you w	of mo ulation ant to	difications to be varied, v will generate 168 solutio continue?	vith or without o	cross variati	ons	6 pa 1 ba 3 ma 3 va	rtial lo se mo odifica lue ste	ad ste difica tion ty eps fo	eps tion /pes r eacł	h mo	dification typ
					Yes	No		6 * [1 + 3 *	3 * 3	6] = 10	68	
<	l								[1 +		>	
eport	length	Short form	•		Ac	cept De	elete F	eport	Calc	culate	Cano	cel	

K Mod	ifications s	izing										—		×
Cond	tions I	Conditions II R	esults	Graphic	I Graphic	: II								
No.	Gear	Type of modificat	tion	Numb	Value (min)	Value (max)	Factor 1 (min)	Factor 1 (max)	Factor	2 (min)	Factor	2 (max)	
1	Gear 1	Eccentric profile of	crowning	3	10.0000	20.0000	0.4	4000	0.600)	0.9000		1.100	0
2	Gear 1	Eccentric crownin	ng	3	20.0000	40.0000	0.	3000	0.500)	0.4000		0.600	0
	_				[20, 3	▼ 30, 40]		[0.3	• , 0.4, 0.5]		[0.4	▼ , 0.5, •	0.6]	
	K Wa	arning							×	6 0 0	rtial las	ad ata	20	
	<u>.</u>	Attention: The number to calculate t -number of p -number of r	⁻ of possi them dep partial lo modificat modificat	ible so pends ads tion st tions t	lutions, and on: eps o be varied	l therefore a	also the ti	ime r ss va	required	1 bas 2 mo 3 val 3 fac 3 fac with	se moc odificati ue step etor 1 s etor 2 s Cross-	dificat ion typ ps for teps f teps f	ion pes each for eac for eac of valu	mo ch m ch m ues a
		The calculati Do you want	ion will g t to conti	genera nue?	te 4380 sol	utions. <				6 * [1	+ (3 *	3 * 3) * (3	* 3 *
						١	′es		No	withc 6 * [1	out Cro I + 3 *	oss-va 3] = (ry of v 60	valu
												1	-	×
eport	length	Short form 🔹					Accep	t	Delete	Report	Calc	culate	Canc	el

Thank you very much! Any Questions?

