Noncircular gears Theory and applications

Dr. Aljaz Pogacnik

Content

- Introduction
- Design principles
- Design possibilities
- Generation of tooth form
- Strength calculation
- Noncircular gears in KISSsoft
- Case studies

GIF source: http://www.gearandrack.com/non_circular_gears/simulation_test_for_non_circular_gears.html

Introduction

- Noncircular gears (NCGs) first sketched by Leonardo da Vinci (1500)
- First known publications came in the 19th century
- A comprehensive overview of the non-circular gears was done by Litvin
- Limited data available especially compared to cylindrical gears

Picture source: H.T. Brown, Five Hundred and Seven Mechanical Movements

Picture source: B. Laczik, Design and Manufacturing of Non-Circular Gears by Given Transfer Function

35

mm

Introduction

- Noncircular gears (NCGs) first sketched by Leonardo da Vinci (1500)
- First known publications came in the 19th century
- A comprehensive overview of the non-circular gears was done by Litvin
- Limited data available especially compared to cylindrical gears

Advantages

- Variable transmission ratio
- Variable speed and torque
- Variable center distance
- Manufacturing process (if plastic or sinter)

Limitations

- Vibrations if not rotating in mass centre
- Strength calculation
- Manufacturing process (if steel)

Picture source: www.machinedesign.com/motorsdrives/noncircular-gears-make-unconventional-moves

• Cylindrical gears: operating pitch lines are circles

• Non-circular gears: operating pitch lines are NOT circles

According to the law of gear meshing, the operating pitch lines must roll together without slip!

Picture source: www.machinedesign.com/motorsdrives/noncircular-gears-make-unconventional-moves

- The **operating pitch lines** can be described by $r_1(\phi_1)$ and $r_2(\phi_2)$.
- The transmission ratio function can be written as

$$i(\varphi_1) = \frac{\omega_1(\varphi_1)}{\omega_2(\varphi_2)} = \frac{r_2(\varphi_2)}{r_1(\varphi_1)}$$
 (eq. 1)

• The **center distance** is defined as

$$r_1(\varphi_1) + r_2(\varphi_2) = a = const$$
 (eq. 2)

• Eq. 1 can be rewritten to

$$i(\varphi_1) = \frac{a - r_1(\varphi_1)}{r_1(\varphi_1)}$$
 (eq. 3)

• Law of gearing: operating pitch lines must roll without slip $r_1(\varphi_1)d\varphi_1 = r_2(\varphi_2)d\varphi_2$

$$d \varphi_2 = rac{r_1(\varphi_1)}{r_2(\varphi_2)} d \varphi_1$$
 (eq. 4)

• Calculation case 1: $r_1(\phi_1)$ is known

$$d\varphi_2 = \frac{r_1(\varphi_1)}{a - r_1(\varphi_1)} \ d\varphi_1$$

$$\varphi_2 = \int_0^{\varphi_1} \frac{r_1(\varphi_1)}{a - r_1(\varphi_1)} \, d\varphi_1$$

• Law of gearing: operating pitch lines must roll without slip $r_1(\varphi_1)d\varphi_1 = r_2(\varphi_2)d\varphi_2$

$$d\varphi_{2} = \frac{r_{1}(\varphi_{1})}{r_{2}(\varphi_{2})}d\varphi_{1} = \frac{1}{i(\varphi_{1})}d\varphi_{1}$$

• **Calculation case 2**: $i(\varphi_1)$ is known

$$d\varphi_2 = \frac{1}{i(\varphi_1)} \, d\varphi_1$$

$$\varphi_2 = \int_0^{\varphi_1} \frac{1}{i(\varphi_1)} \, d\varphi_1$$

 To have continuous rotation of the non-circular gears, the operating pitch lines must be closed centrodes

Where n_1 and n_2 are Z⁺.

KISSsoft

 In case of unclosed centrodes, the angular rotation (or lateral movement) of the engaging gears is limited

- Curves used for operating pitch lines
 - Ellipses
 - N-lobbed ellipses
 - Circles with eccentricity
 - Arbitrary curves
- Additional eccentricity
- Variable center distance

KISSsoft

KISSsoft

KISSsoft

KISSsoft

Variation of center distance

KISSsoft

Rack and pinion design

KISSsoft

Generation of tooth form

The tooth form of the noncircular gears can be generated by a reference rack. In order to generate the tooth form, the reference lines must roll without slip. To produce the inner noncircular gears, a pinion type cutter must be used. A pinion type cutter can also be used to produce outer gears.

When using sintered or plastic material, then hobbing cutters or pinion type cutters are not required.

- No standardized strength calculation is available for noncircular gears
- Noncircular gear can be momentarily represented as a cylindrical gear
- Calculation with replacement cylindrical gear can be used
- Identification of critical teeth
 - Most loaded tooth
 - Tooth with the highest undercut
 - Ratio load/root thickness
 - Smallest root radius
 -

- Creating cylindrical replacement gear
- Operating pitch diameters from 'local' curvatures

- Normal module and pressure angle from noncircular gears
- Tip/root diameters for both gears
- Centre distance

- Tangential force and rotational speed have to be recalculated based on the new center points O₁ and O₂
- Strength calculation is then performed using ISO 6336 or VDI 2736

Noncircular gears in KISSsoft

The operating pitch lines are currently calculated in an Excel (and imported in KISSsoft)

			-		 		~		-	
NCG elliptical pitch line gear calculation (G1-G2)				SET eccentricity			Calua DK Calu			
		k (intiger)	PK	EK	focal point = 1		Solve CD	Solve PR	Solve LK	
Scale geometry	Ellipse with:	1	8.000000	0.500000	center point = 2					
ocale geometry					user input = 3					
Scale factor	10				Offset [mm]					
Ratio	1							Calculate n	nodule G1	
Speed Gear 1 [rpm]	1		Operating pitch I	ine length (mm)				z	25	
Center distance CD [m	m] 21.333		G1	62.61171	MAX ratio	MIN ratio		mn	0.797197	
Start angle [°]	0		G2	62.61171	3.0000	0.3333				
End angle [°]	360									
Angle increment [°]	0.1		Rotation a	angle (°)				Calculate number of teet		
tproU= (sec)	60		G1	360.0000	SOLVER			mn	0.797197	
First cell	18		G2	360.0000	5.8253E-20			z1	25.000	
Last cell	3618							z2	25.000	

- The operating pitch lines are defined in polar coordinates or as a *.dxf file
- The operating pitch lines must be prolonged at the beginning and end for at least 30°

Noncircular gears in KISSsoft

Several different options available in KISSsoft

NG NG	Type of center distance	fixed			Type of center distance
Input: OPERATI PITCH LI	Generate Specification Operating pitch line gear 1	a Oper ellips	rating pitch line	/ mm / /]	Generate Specification Operating pitch line gear 1 Operating pitch line gear 2
ıt: ISSION IO	Type of center distance Center distance	fixed	~ 30.0000000	mm	Type of center distance Generate
Inpu RANSMI RATI	Generate Specification Ratio	Ratio)		Specification Ratio Operating pitch line gear 1
Ē					

Center distance: FIXED

Center distance: VARIABLE

Operating pitch line

variable

Input...

Type of center distance	variable	~
Generate		
Specification	Ratio	~
Ratio	Input	
Operating pitch line gear 1	ellipse_G1.DAT	

Noncircular gears in KISSsoft – Tab Basic data

Basic data 🗗 Reference	orofile 🗗 🛛 Tolerances 🗗							
Geometry								
Normal module m	n	1.07763900	mm			Gear 1	Gear 2	
Normal pressure angle a _r		18.00000000	o	Number of teeth	z	25	25	
Pinion type cutter 1	spur gear	~		Facewidth	b	1.00000000	1.00000000	mm
Helix angle of pinion type cutter β_0		0.00000000	0	Tip rounding	r	0.3000000	0.3000000	mm
Type of center distance	fixed	~						
Center distance a		30.00000000	mm					
Generate								
Specification	Ratio	~		Position of starting angle Gear 1		Middle root	~	
Ratio	Input			Starting angle	φa	0.00000000	180.00000000	0
				End angle	Φe	360.0000000	-180.00000516	0

Noncircular gears in KISSsoft – Tab Reference profile

Basic data 📑 Reference profile	Tolerances				
Final machining Gear 1		Final machining Gear 2			
Tool selection	Cutter/Tool: Pinion type cutter	Tool selection		Cutter/Tool: Pinion type cutter	i
Designation	Own Input	Designation		Own Input	
Number of teeth z ₀	20	Number of teeth	Z ₀	20	
Profile shift coefficient x ₀	0.0000000	Profile shift coefficient	X ₀	0.0000000	
Addendum coefficient h [*] _{aP0}	1.45000000	Addendum coefficient	h^*_{aP0}	1.45000000	
Tip form	Rounding	Tip form		Rounding ~	
Tip radius coefficient ρ^*_{aP0}	0.05000000	Tip radius coefficient	ρ^*_{aP0}	0.05000000	
$\label{eq:definition} \text{Dedendum coefficient} \qquad \textbf{h}^*_{\text{fPO}}$	1.0000000	Dedendum coefficient	$h_{\rm fP0}^{*}$	1.0000000	
Root radius coefficient ρ^*_{fP0}	0.05000000	Root radius coefficient	ρ^*_{fP0}	0.05000000	
Protuberance height coefficient h_{prP0}^{*}	0.0000000	Protuberance height coefficient	h^*_{prP0}	0.0000000	
Protuberance angle aprP0	0.00000000 °	Protuberance angle	a _{prP0}	0.0000000	0
Root form height coefficient h_{FP0}^*	0.0000000	Root form height coefficient	$h_{\rm FfP0}^{*}$	0.0000000	
Profile angle of the chamfer flank $\alpha_{\!K\!P\!0}$	0.00000000 °	Profile angle of the chamfer flank	(a _{KP0}	0.0000000	0
✓ Topping tool		✓ Topping tool			

Noncircular gears in KISSsoft – Tab Reference profile

Basic data 🛛 🗗	Reference profile 🗗	Tolerances	ð					
Tolerance field								
Tolerance field for to	Tolerance field for tooth form display Mean value ~							
Allowances								
Gear 1 Gear 2								
Tooth thickness allow	vance (upper/lower) A _{sn}	-0.120000	00	-0.32000000	mm	A _{sn}	-0.12000000	-0.32000000 mm

Module specific settings

K Module specific settings		?	×
Approximation for export	t		
Curve type	Splines	~	
Permissible deviation $\boldsymbol{\epsilon}$		0.00000000	μm
		OK Ca	ncel

Noncircular gears in KISSsoft – Tooth form examples

Noncircular pinion and rack

Case study 1

- Cylindrical gears with constant transmission ratio i = 10
- Implementation of the non-circular gear stage
 - Reducing the motor size to half
 - Implementation of the stop positions in the design

Case study 2

• 3 non-circular gear train with transmission ratio $i = 1 \pm 0.25$

1st and 3rd gears are cylindrical gears with an offset of 0.65 mm

Case study 3

- Cable braided sleeving machines
- Gears with revolutions 1:1
- Variation of transmission ratio: 1:6

Module Z40

- Currently the KISSsoft module is sold together with a 1-time engineering
- The customer gets the Excel file to generate the operating pitch lines and instructions on how to generate the tooth form in KISSsoft
- He can then modify the Excel and use it for his next projects

Thank you for your attention!

Sharing Knowledge

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.com, www.KISSsoft.com

