Bearing Calculation with KISSsoft and SKF Cloud Services

MSc ETH Johannes Wüthrich (Software Engineer) MSc ETH Ilja Tsikur (Senior Engineer – Global Sales)

1 | 2021 October | MSc ETH Johannes Wüthrich | Bearing Calculation with KISSsoft and SKF Cloud Services

Bearing Calculation with KISSsoft and SKF Cloud Services

Content

- Calculation methods for rolling bearings in KISSsoft
- Application and advantages of calculation according to ISO/TS 16281
- **SKF Cloud Service**: Accurate rolling bearing stiffness and rating life directly via SKF service

Objective of calculation methods for rolling bearings

Objective of calculation methods for rolling bearings

ISO 76:2006 Static load ratings

ISO 281:2007 Dynamic load ratings and rating life

ISO/TS 16281:2008 Methods for calculating the modified reference rating life for universally loaded bearings

Open, manufacturer specific instructions (catalog)

Manufacturer-internal-use-only implementations

KISSsoft

Standardized methods

- ISO 76:2006
 Static load ratings
- ISO 281:2007 Dynamic load ratings and rating life
- ISO/TS 16281:2008
 Methods for calculating the modified reference rating life for universally loaded bearings

Standardized methods: ISO 76:2006 (Static load ratings)

Static safety factor

 $S_0 = \frac{C_0}{P_0}$

Static equivalent load

 $P_0 = X_0 F_r + Y_0 F_a$

Standardized methods

- ISO 76:2006
 Static load ratings
- ISO 281:2007
 Dynamic load ratings and rating life
- ISO/TS 16281:2008
 Methods for calculating the modified reference rating life for universally loaded bearings

Standardized methods: ISO 281:2007 (Dynamic load ratings and rating life)

Basic rating life

$$L_{10}[10^6 \text{ revs}] = \left(\frac{C}{P}\right)^p$$

Dynamic equivalent load

 $P = XF_r + YF_a$

Modified rating life

 $L_{nm} = a_1 \cdot a_{ISO} \cdot L_{10}$

Standardized methods: ISO 76:2006, ISO 281:2007

Bearing reaction is an input to the calculation to be modeled and calculated separately

ISO 76

KISSsoft

ISO/TS 16281

Static

Safety

Standardized methods

ISO 76:2006
 Static load ratings

10

- ISO 281:2007 Dynamic load ratings and rating life
- ISO/TS 16281:2008
 Methods for calculating the modified reference rating life for universally loaded bearings

KISSsoft

Standardized methods: ISO/TS 16281:2008 (considering internal geometry)

KISSsoft

Standardized methods: ISO/TS 16281:2008 (considering internal geometry)

Bearing reaction is a result of the calculation (requires internal iterations)

Standardized methods: ISO/TS 16281:2008 (considering internal geometry)

- The macro geometry is typically only available in individual cases
- Micro geometry is almost never available

Standardized methods: ISO/TS 16281:2008 (considering internal geometry)

ISO 76

$$C_{0r} = 44 \cdot \left(1 - \frac{D_{we} \cdot \cos \alpha}{D_{pw}}\right) \cdot i \cdot \mathbf{Z} \cdot \mathbf{L}_{we} \cdot \mathbf{D}_{we} \cdot \cos \alpha$$

ISO 281

$$\boldsymbol{C_r} = \boldsymbol{b_m} \cdot f_c \cdot (i \cdot \boldsymbol{L_{we}} \cdot \cos \alpha)^{\frac{7}{9}} \cdot \boldsymbol{Z^{\frac{3}{4}}} \cdot \boldsymbol{D_{we}^{\frac{29}{27}}}$$

3+ unknowns, 2 equations and additional constraints

00

KISSsoft

+ hard constraints (physical limits, design features)+ soft constraints (typical ratios and features)

Objective of calculation methods for rolling bearings

ISO 76:2006 Static load ratings

ISO 281:2007 Dynamic load ratings and rating life

ISO/TS 16281:2008 Methods for calculating the modified reference rating life for universally loaded bearings

Open, manufacturer specific instructions (catalog)

Manufacturer-internal-use-only implementations

Objective of calculation methods for rolling bearings

ISO 76:2006 Static load ratings

ISO 281:2007 Dynamic load ratings and rating life

ISO/TS 16281:2008 Methods for calculating the modified reference rating life for universally loaded bearings

Open, manufacturer specific instructions (catalog)

Manufacturer-internal-use-only implementations

SKF Cloud Services

Use SKF bearing stiffness and calculate ISO/TS 16281 reference rating life

Bearing Calculation with KISSsoft and SKF Cloud Services

✓ Calculation methods for rolling bearings in KISSsoft

- Application and advantages of calculation according to ISO/TS 16281
- ✓ SKF Cloud Service: Accurate rolling bearing stiffness and life directly via SKF service

More cloud services also to other bearing manufacturers to be added in future KISSsoft releases

Thank you for your attention!

Sharing Knowledge

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.com, www.KISSsoft.com

KISSsoft

19 | 2021 October | MSc ETH Johannes Wüthrich | Bearing Calculation with KISSsoft and SKF Cloud Services