Bolt Calculation according to VDI 2230

Theory of VDI2230 Part 1 (partially Part 2)

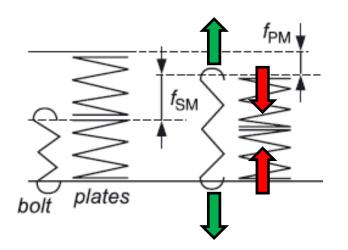
KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

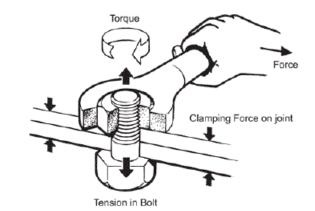
Day 1	
14:00	Welcome to the training
14:15 – 15:45	Introduction, Scope, Calculation Model, Distortion Triangles
15:45 – 16:00	Break
16:00 – 18:00	Tightening Factor, Resiliiences, Dividing the Working Load
18:00	End of Live Stream Day 1
After Training	Independent Work on the Exercises (approx. 2 h)

Discussion of the Exercises, Questions & Answers
Eccentric Clamping and Loading
Break
Stress/Strength, VDI Part 2, Calculation with FE Results
End of Training

- 1. Scope of VDI2230 Part 1
- 2. Basic concepts of VDI2230 Part 1
- 3. Calculation steps of VDI2230 Part 1
- 4. Short introduction to VDI2230 Part 2

- Included:
 - Steel, 60° flank angle
 - strength grades 8.8 to 12.9
 - frictional transmission of working load (through clamped parts)
 - static or dynamic axial force, bending moments and transverse forces
 - limited size of contact areas at inner interfaces (G)
- Not included:
 - Extreme stresses (e.g. corrosion)
 - sudden and stochastic loads
 - determination of external loading

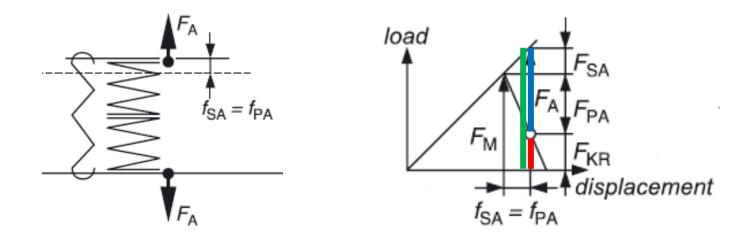



Single-bolted joints		Multi-bolted joints						Bolted joints
concentric	or eccentric	in a plane		axial symmetry		symmetrical	asymmetrical	bolt axes
cylinder or prismatic body	beam	beam	circular plate	flange with sealing gasket	flange with plane bearing face	rectangular multi- bolted joint	multi-bolted joint	
				(5)	©			joint geometry
M _y F _y M _z M _x F _z F _x	F _v M _z F _x	F _y M _z		p Fy Mz Mz	My Fy My Mx	My Fy My Fy My Fy Fy Mz Mz Mx	<i>M</i> _y <i>F</i> _y <i>F</i> _y <i>F</i> _y <i>F</i> _y <i>F</i> _x <i>M</i> _x	relevant loads
axial force F_A transverse force F_Q working moment M_B	axial force F_A transverse force F_Q moment in the plane of the beam M_Z	axial force F_A transverse force F_Q moment in the plane of the beam M_Z	internal ressure p	axial force F_A (pipe force) working moment M_B internal pressure p	axial force $F_{\rm A}$ torsional moment $M_{\rm T}$ working moment $M_{\rm B}$	axial force $F_{\rm A}$ transverse force $F_{\rm Q}$ torsional moment $M_{\rm T}$ working moment $M_{\rm B}$	axial force $F_{\rm A}$ transverse force $F_{\rm Q}$ torsional moment $M_{\rm T}$ working moment $M_{\rm B}$	forces and moments
VDI 2230 limited treatmen		t by VDI 2230	DIN EN 1591 AD 2000 Note B7	limit	ed treatment by VDI	2230		
bending beam theory with additional conditions		plate theory			atment using d models		calculation procedure	
finite element method (FEM)								

KISSsoft

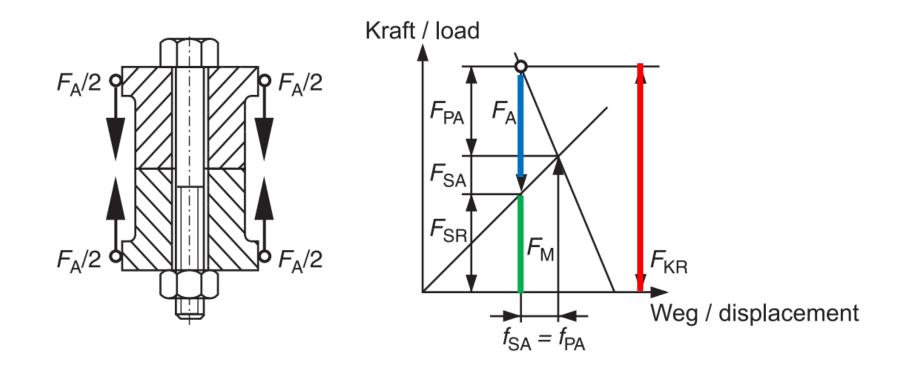
Assembly state: "internal load"

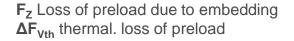
During assembly an axial preload force F_M is generated. This force is present as a **tensile force** in the bolt (Fs) and as a compressive force in the joint (F_K).

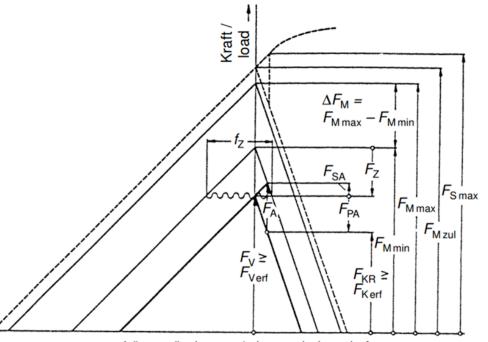


load bolt plate $F_{\rm M} = F_{\rm K}$ $f_{\rm SM}$ displace $f_{\rm PM}$ ment

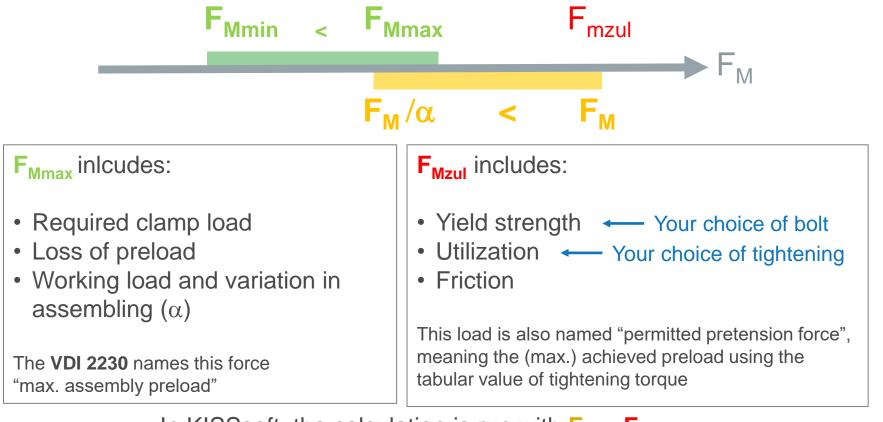
Working state: "external load, F_A >0"


Introducing the axial working load F_A the bolt is additionally loaded with the additional bolt load F_{SA} which results in the total **bolt load** F_S . The plates are relieved by the amount F_{PA} which results in a **residual clamp load** F_{KR} .

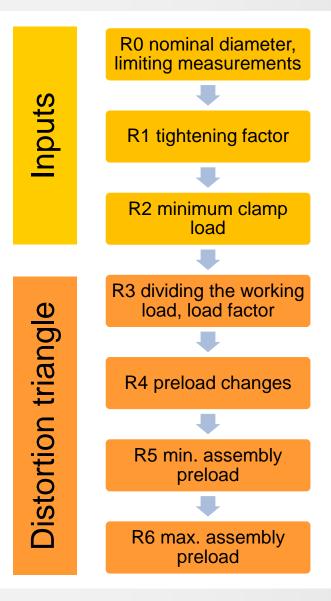

Special working state: "external load, F_A >0"

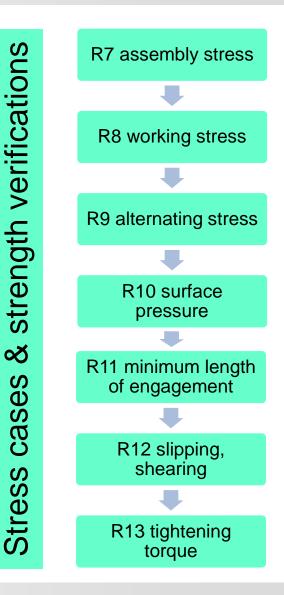

The clamping force increases from F_M to F_{KR} . Relieving the bolt with F_{SA} results in a reduction of the **bolt force** to F_{SR} .

$$F_{\text{M max}} = \alpha_{\text{A}} \cdot F_{\text{M min}}$$
(16)
= $\alpha_{\text{A}} \left[F_{\text{Kerf}} + (1 - \Phi) F_{\text{A}} + F_{\text{Z}} + \Delta F_{\text{Vth}} \right]$



Längenänderung / change in length f


The mounting force F_M needs to be bigger than the maximum required assembly preload F_{Mmax} and smaller than the permissible assembly preload F_{mzul}



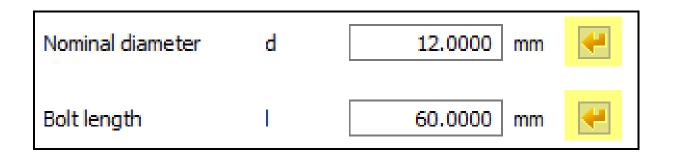
In KISSsoft, the calculation is run with $F_M = F_{Mzul}$

KISSsoft

Basic concepts of VDI 2230

The bolt nominal diameter is roughly determined according to Table A7.

In the first step (step A) the next **highest load** to the load acting on the bolt joint is selected.


Depending on the **type of load** (static, dynamic, transverse load..) increase the number of load steps (step B).

Finally, the load is increased depending on the **tightening method** (step C).

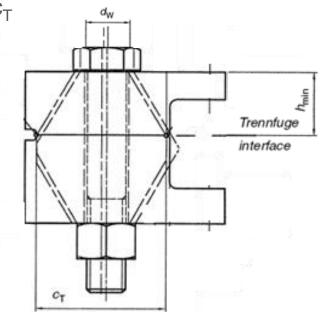
Columns 2 to 4 give the required bolt dimensions in mm for the selected **strength grade** of the bolt (step D).

1	2	3	4		
Load	Nominal diameter in mm				
in N	Strength grade				
	12.9	10.9	8.8		
250					
400					
630					
1 000	3	3	3		
1 600	3	3	3		
2 500	3	3	4		
4 000	4	4	5		
6 300	4	5	6		
10 000	5	6	8		
1 <u>6</u> 000	6	8	10		
25 000	8	10	12		
40 000	10	12	14		
<mark>63</mark> 000	12	14	16		
100 000	16	18	20		
160 000	20	22	24		
250 000	24	27	30		
400 000	30	33	36		
<mark>630</mark> 000	36	39			

Sizing of bolt diameter

Based on VDI 2230, table A7, and the working load, the bolt diameter is proposed. The next higher diameter from database is used.

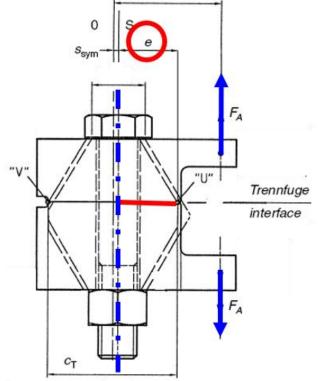
Sizing of bolt length


Based on the thickness of clamped parts and the bolt diameter the bolt length from KISSsoft database is proposed. If there is no suitable length, no proposition is given.

The calculation procedure of VDI 2230 for eccentrically clamped and eccentrically loaded joints is only valid within the limiting size G. The interface c_T has to be smaller than G:

 $\begin{array}{ll} \text{TTJ: G'= (1.5..2)d_w} & C_T < G \\ \text{TBJ: G = d_w + h_{min}} & \end{array}$

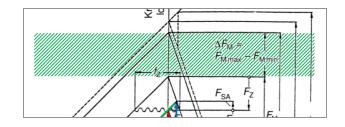
 $\begin{array}{ll} d_w & \mbox{ outside diameter of the plane head bearing surface} \\ h_{min} & \mbox{ thickness of the smaller plate of two clamped plates} \\ c_T & \mbox{ size of the interface} \end{array}$



The distance to the point which is in danger of opening must nut be further than ½ G away from the bolt.

 $\frac{G_{\min}}{2} > e$

e Distance from bolt axis to point U"U" Point which is at risk of opening

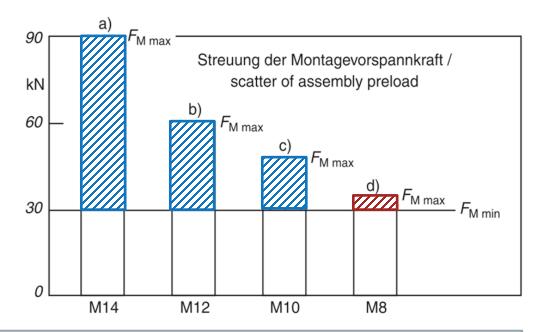


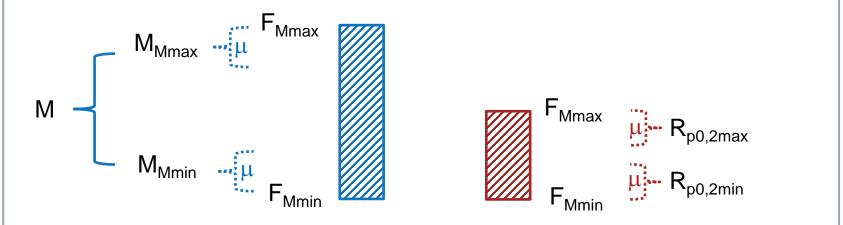
R1 Tightening factor

The required minimum assembly preload has to be achieved despite of the uncertainities in tightening (scatter of friction coefficient in the thread μ_{G} and in the head bearing area μ_{K} as well as tightening technique)

$$F_{M\max} = \alpha_A \cdot F_{M\min} = \alpha_A \cdot [F_{Kerf} + (1 - \Phi_{en})F_A + F_Z + \Delta F_{Vth}]$$

F _{Mmax}	required maximum assembly preload
α_A	tightening factor
F _{Mmin}	required minimum assembly preload

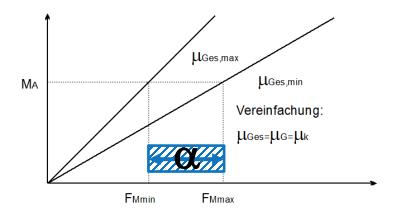

The tightening factor α is listed in table A8. The coefficients of friction are listed in table A5. Alternatively the tightening factor can be calculated based on scatter of tightening torque and friction.



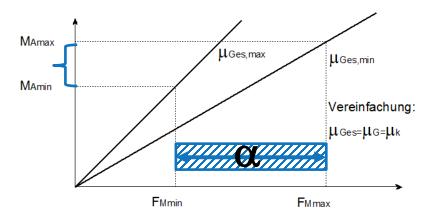
R1 Anziehfaktor

$$F_{M\max} = \alpha_A \cdot F_{M\min}$$

- a) Impact wrench
- b) Turning wrench
- c) Torque wrench
- d) Yield-controlled turning wrench



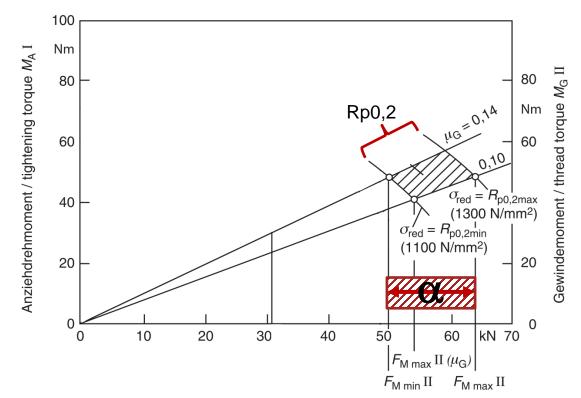
KISSsoft


R1 Tightening factor

Torque-controlled tightening

Case 1: scatter of friction coefficient, no torque scatter

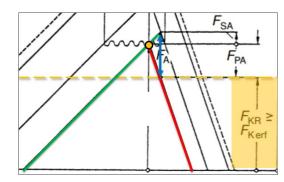
In case of an exact tightening torque, the tightening factor is only detemined by the scatter of friction coefficient.



Case 2: scatter of friction coefficient and tightening torque

In most cases both values vary. The tightening factor includes both effects.

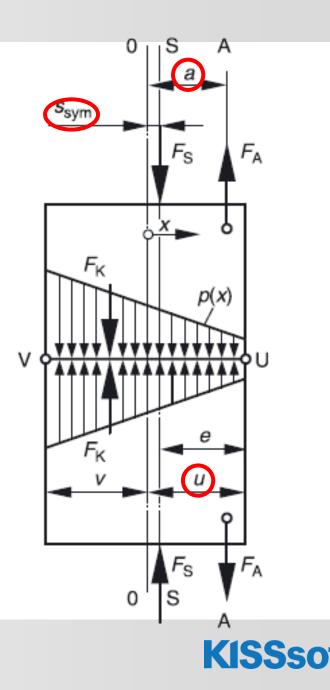
Yield-controlled tightening


With yield-controlled tightening the yield point is controlled. The tightening is influenced by the scatter of yield value $R_{p0.2min/max}$ and friction of thread μ_G , but not by the friction of bolt head bearing area μ_K

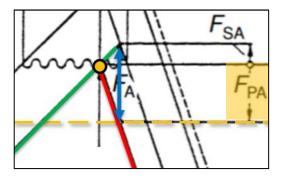
R2 Minimum clamp load

The minimum clamp load is the minimum required clamp load to fulfill the functionality of bolt joint:

$$F_{M\max} = \alpha_A \cdot F_{M\min} = \alpha_A \cdot [F_{Kerf} + (1 - \Phi_{en})F_A + F_Z + \Delta F_{Vth}]$$
$$F_{Kerf} \ge \max(F_{KQ}; F_{KP} + F_{KA})$$


- Friction grip to transmit a transverse load F_{KQ} or torque the transverse load is calculated into an axial clamp load using the friction coefficient of the plates
- Sealing against a medium F_{KP}
- Prevention of opening F_{KA} (see next slide)

Opening can occure with eccentrically loaded or eccentrically clamped bolt joints.

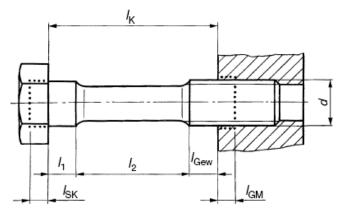

 $F_{KA} = F_{Kab} = F_A(f(u, a, s_{sym})) + M_B(f(u, s_{sym}))$

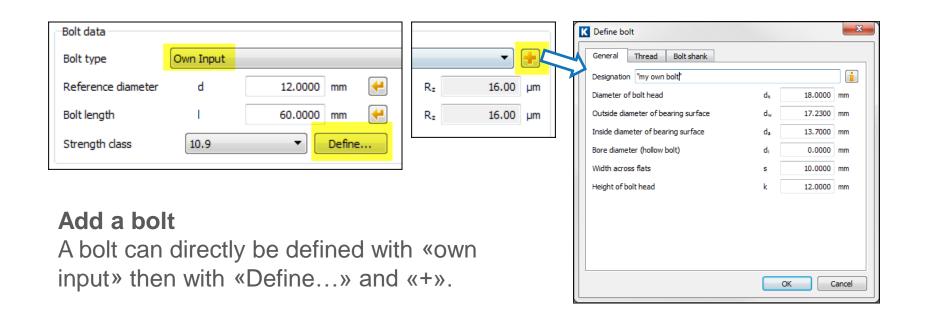
The clamp load at opening limit $F_{\rm Kab}$ depends on the distance of the loading a, the point of opening u and the eccentricity of the clamping $s_{\rm sym}$

The axial working load F_A is divided into an additional bolt load F_{SA} and a plate relieving load F_{PA}

$$F_{M \max} = \alpha_A \cdot F_{M \min} = \alpha_A \cdot [F_{Kerf} + (1 - \Phi_{en})F_A + F_Z + \Delta F_{Vth}]$$
$$F_{PA} = (1 - \Phi) \cdot F_A$$

- F_A axial working load
- F_{PA} plate relieving load
- $\Phi_{\text{en}} \qquad \mbox{load factor, describes the resilience of the plate δ_{P} in relation to the total resilience $\delta_{\text{P,S}}$ }$


➔ In case of no axial working load, as i.e. only torque, these calculations aren't necessary

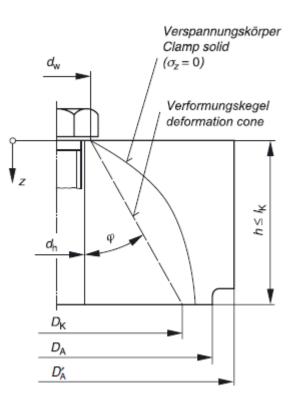

The elastic resilience of the bolt is calculated as follows:

$$\delta_{S} = \delta_{SK} + \delta_{S1} + \ldots + \delta_{Gew} + \delta_{GM}$$

 $\begin{array}{ll} \delta_{\text{SK}} & \text{Bolt head} \\ \delta_{\text{S1},2...} & \text{Shafts, with the individual length dimensions} \\ \delta_{\text{Gew}} & \text{Thread, unengaged part} \\ \delta_{\text{GM}} & \text{compressive deformation of the nut} \end{array}$

This way you can enter anti-fatigue bolts or hollow bolts etc.

If you preselect a standardized bolt the values are shown as default inputs after switching to «own input».

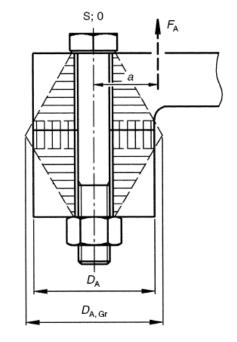


The elastic resilience of the plates is calculated as follows:

$$\delta_P = \delta_{P1} + \delta_{P2} + \dots$$

For the calculation of the resilience, the clamp solid body is substituted by a virtual deformation cone with the same resilience.

The cone angle is calculated individually based on the actual geometrical and clamping conditions.


To determine the resilience of the (substitutional) deformation body, it has to be checked, whether the deformation cones reach the outer edge of the plates.

As a result of i.e. large clamp length or small plate dimensions, the cones are disturbed by the outer egde, and the middle part of the deformation body is changed to a sleeve.

The limiting diameter $D_{A,Gr}$ serves to settle the question as to whether a deformation sleeve (cylindrical ring) is present between the cones:

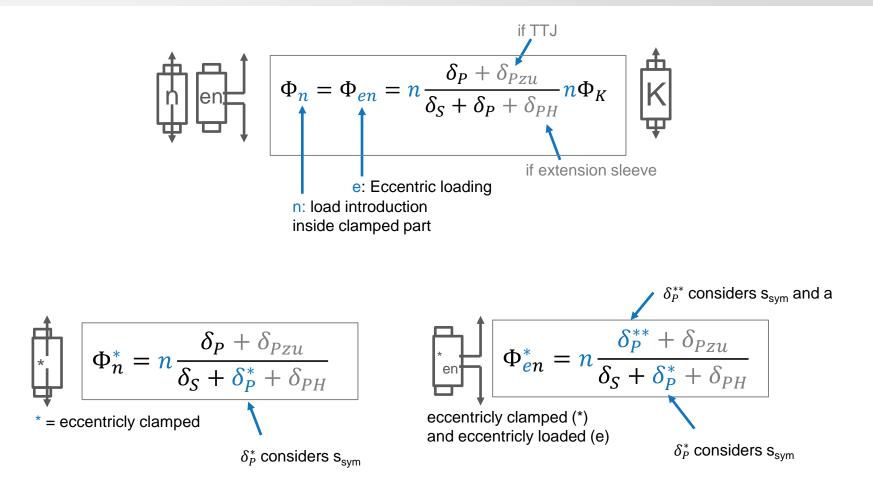
$$D_{A,Gr} = d_W + w \cdot l_K \cdot \tan \varphi$$

TBJ: w = 1TTJ: w = 2

R3 load factor (simple)

The load factor describes, how much the bolt load F_S is increased by the additoinal bolt load F_{SA} , when the axial working load F_A is applied:

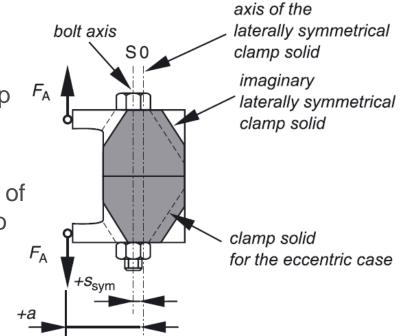
$$\Phi_{K} = \frac{\delta_{P}}{\delta_{S} + \delta_{P}} = \frac{F_{SA}}{F_{A}}$$


- δ_{s} resilience of the bolt
- δ_{P} resilience of the plates
- $\Phi_{\rm K}$ load factor

The load factor Φ_{K} presumes the (theoretical case of) load introduction directly under the bolt head and nut bearing areas (n=1).

For eccentrically loaded joints or load which is not introduced directly under the head/nut, the **load introduction factors a and n** have to be considered. For eccentrically clamped joints the factor s_{sym} .

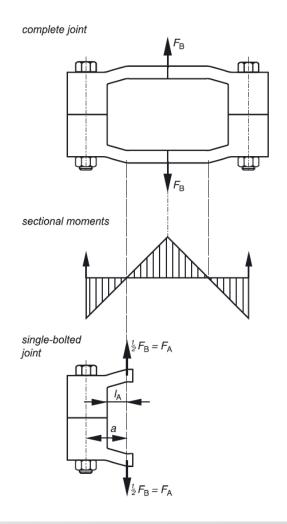
R3 load factor (extended)


$$\begin{split} \delta_P^* &= \delta_P + s_{sym}^2 \cdot \beta_P \\ \delta_P^{**} &= \delta_P + a \cdot s_{sym} \cdot \beta_P \end{split}$$

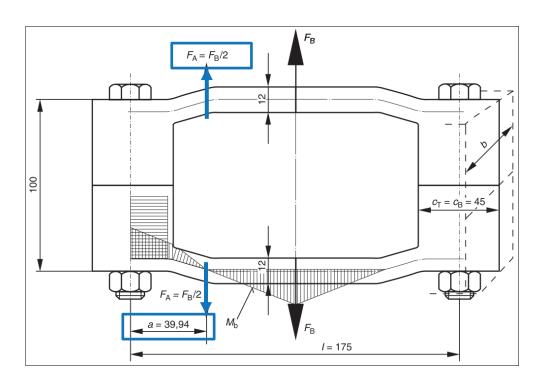
For eccentricly clamped and loaded parts, the influence on the plate resilience is taken into account by the factors s_{sym} and a.

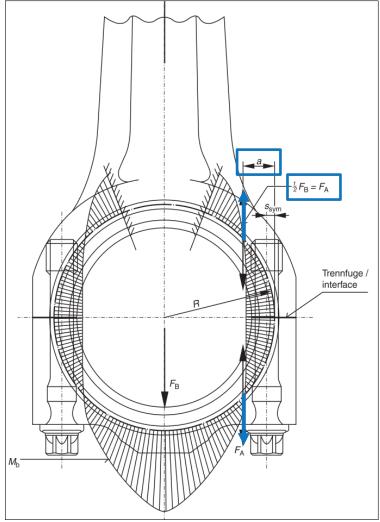
s_{sym} distance from the bolt axis to the imaginary laterally symmetrical clamp solid

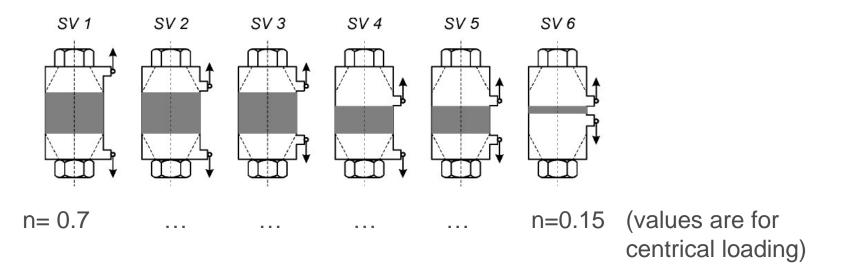
a the distance of the substitutional line of action of the axial working force F_A to the axis of the imaginary laterally *F* symmetrical clamp solid



The single-bolted joint should be released (cut away) from ist surroundings on the load side in such a way, that the sectional planes are free of moments.

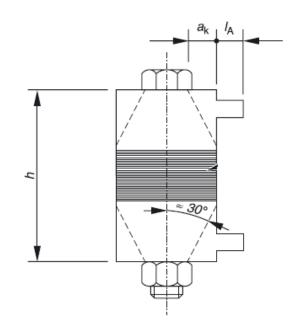

Hence the distance of load introduction **a** is determined in such a way, that the moment is = 0.


For the bolt calculation only the axial working load F_A and the distance **a** are used.


R3 Eccentrial loading

R3 load introduction factor n

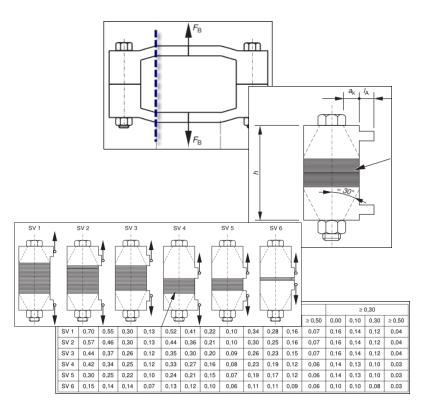
The load introduction factor **n** considers the axial height and lateral distance of the load application.


With SV1, the force is close to the bolt head, which results in higher additional bolt load than with SV6. For tapped thread joints (TTJ) the types SV1, SV2 and SV4 are to be applied.

The bigger the eccentricity, the smaller the load introduction factor n.

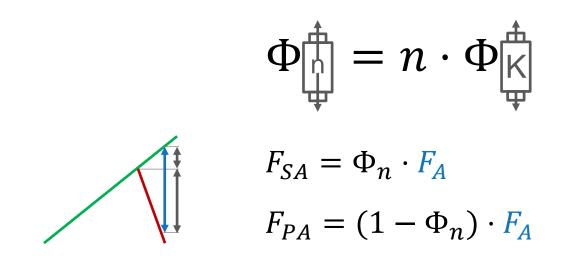
The eccentricity is divided in a part from basic solid $a_{\rm K}$ and a connecting solid $I_{\rm A}$.

- h height of bolt joint
- a_K distance between the edge of preloading area and the force introduction point of the basic solid
- I_A length between basic solid and load introduction point
- A load introduction factor n<1 decreases the additional bolt load F_{SA}



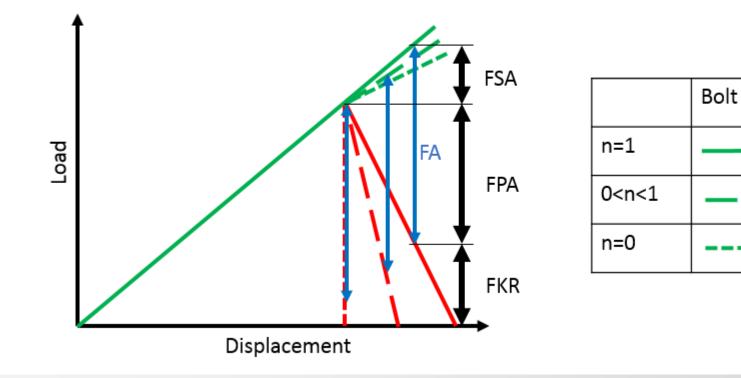
R3 load introduction factor n

Simplified Procedure:


- 1) Release single-bolted joint
- 2) Divide into basic and connecting solid
- 3) Establish joint type
- 4) Determine n from table

Full Procedure:

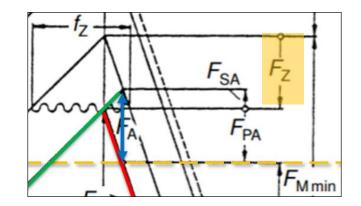
-> See VDI 2230 Annex C (pages 171-175)



- Φ_n load factor, considering the load introduction factor n
- n load introduction factor
- F_{SA/PA} additional bold load/plate load (plate relieving load)
- With n=1: The additional bolt load F_{SA} is highest
 With n=0: The additional plate load (relieving load) F_{PA} is highest, the interface is relieved and the minimum clamp load is decreased

The joint diagram looks different depending on the load introduction factor.

The inclination of the lines for F_{PA} and F_{SA} change based on the value of n.



Plates

R4 Preload changes

$$F_{M\max} = \alpha_A \cdot F_{M\min} = \alpha_A \cdot [F_{Kerf} + (1 - \Phi_{en})F_A + \frac{F_Z + \Delta F_{Vth}}{F_Z + \Delta F_{Vth}}]$$

Preload changes occur mainly due to two effects:

- Embedding due to flatening of surface roughness or relaxation

The guide values for the amount of embedding f_z can be taken from tables in VDI 2230.

- Different thermal expansion due to different materials and coefficients or different temperatures

"Main dimensioning formula"

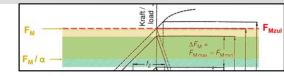
$$F_{M\max} = \alpha_A \cdot F_{M\min} = \alpha_A \cdot [F_{Kerf} + (1 - \Phi_{en})F_A + F_Z + \Delta F_{Vth}]$$

F_{Mmax} maximum required assembly preload

- α_A tightening factor
- F_{Mmin} minimum required assembly preload
- F_{kerf} required clamp load in the interface
- $\Phi_{\rm en}$ load factor for eccentrical clamping and loading
- F_A axial working load
- F_z preload changes due to embedding
- ΔF_{Vth} preload changes due to temperature influences

$$\sigma_{red,Mzul} = \sqrt{\sigma_M^2 + 3\tau_M^2} = R_{p0.2} \cdot \nu$$

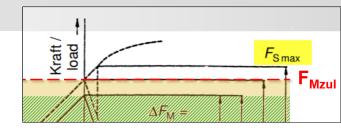
- σ_{M} tension stress
- $\tau_{\rm M}$ torsional stress

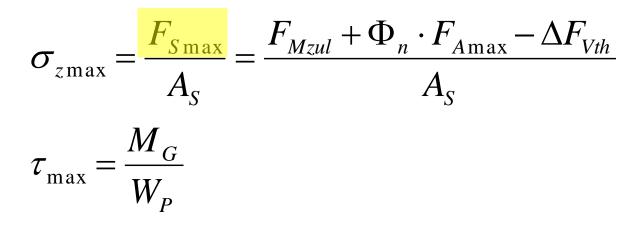

 $\sigma_{\text{red},\text{Mzul}}$ uniaxial comparative stress in the assembly state

- v utilization factor, mostly 90%
- R_{p0,2min} minimum yield point

During assembly – with the usual tightening techniques with torsional stress – tension stress σ_M and torsional stress τ_M are present.

These stresses are converted by means of the deformation energy theory (GEH) to an equivalent uniaxial stress $\sigma_{red,Mzul}$.


$$\sigma_{Mzul} = \frac{\sigma_{red,Mzul}}{\sqrt{1+3\cdot\left[\frac{3}{2}\frac{d_2}{d_0}\left(\frac{P}{\pi \cdot d_2}+1.155\cdot\mu_{G\min}\right)\right]^2}}$$


$$F_{Mzul} = A_0 \cdot \sigma_{Mzul}$$

 $\begin{array}{ll} \sigma_{red,Mzul} & \mbox{uniaxial comparative stress in the assembly state} \\ \sigma_{Mzul} & \mbox{permissible tension, determined from comparative stress} \\ F_{Mzul} & \mbox{permissible mounting force, based on bolt strength} \\ A_0 & \mbox{minimum cross-sectional area of the bolt (usually with 0.5(d_2+d_3))} \end{array}$

→ The permissible mounting force F_{Mzul} must be larger than the maximum required mounting force F_{Mmax}

 $\begin{array}{ll} \sigma_{zmax} & \mbox{maximum stress in working state} \\ \tau_{max} & \mbox{torsional stress} \end{array}$

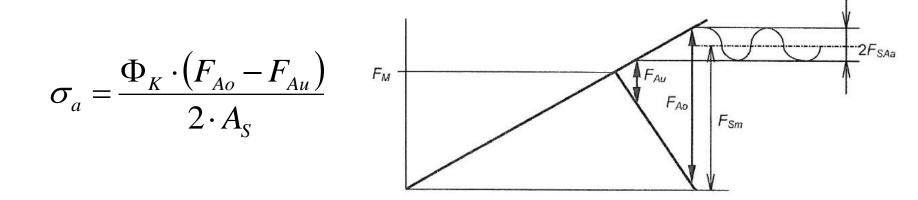
Using the axial working load, the stresses in working state are higher because of the operating load than in the assembly state

 $\sigma_{\text{red,B}}$ comparative stress in working state

 k_{τ} factor to consider the lower torsion (compared with assembly state, recommended is 0.5

 S_F Safety against deformation $R_{p0,2min}$ minimum yield point

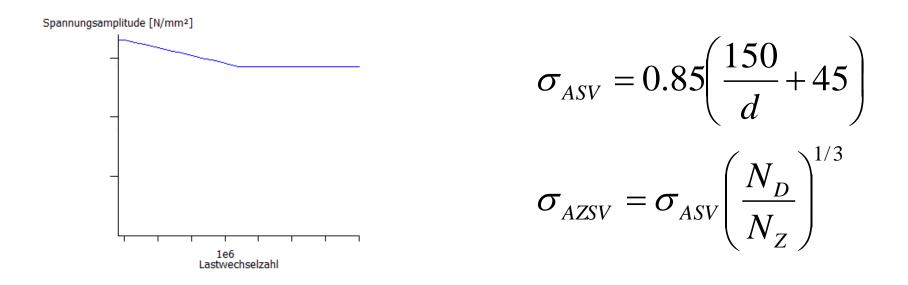
safety against deformation
 The calculation is not applicable, if there is no axial working load.
 The safety is then calculated in assembly state.


R8 Working stress (torsion free mounting)

Hydraulic friction and torsion free mounting can also be considered.

$$R_{p0,2\min} \cdot A_0 \ge F_{S\max}$$
$$S_F = \frac{R_{p0,2\min}}{\sigma_{z\max}} \ge 1$$

 $\begin{array}{ll} R_{p0,2min} & \mbox{minimum yield point} \\ \sigma_{zmax} & \mbox{maximum stress in working state} \\ \textbf{S}_{\textbf{F}} & \mbox{safety against deformation} \end{array}$



- F_{Ao} upper load
- F_{Au} lower load
- $\Phi_{\rm K}$ load factor
- A_S stress cross section
- $\sigma_{a/ab}$ continuous alternating stress acting on the bolt

The **acting stress amplitude** is calculated with the difference between upper and lower additional bolt load.

 $\sigma_{ASV,G}$ stress amplitude of the endurance limit of bolts rolled before or after the heat treatment, for load cycles $N_D > 2^* 10^6$ stress amplitude of the fatigue strength of bolts rolled before or after the heat treatment, for load cycles $10^4 < Nz < 2^* 10^6$

The **permissible stress amplitude** for the endurance limit and fatigue strength (with failure probability of 1%) are listed in VDI 2230.

 $\underline{S_D} = \frac{\sigma_{AS}}{\sigma_{a/ab}} \ge 1.2$

- **S**_D sagety against fatigue
- σ_{AS} permissible stress amplitude
- $\sigma_{a/ab}$ acting stress amplitude

safety against fatigue The calculation is not applicable, if there is no axial working load.

 $\underline{S_P} = \frac{p_G}{p_{M/R_{\text{max}}}} \ge 1$

- **S**_P Safety against pressure
- p_G limiting surface pressure

p_{M/Bmax} maximum acting surface pressure in assembly or working state

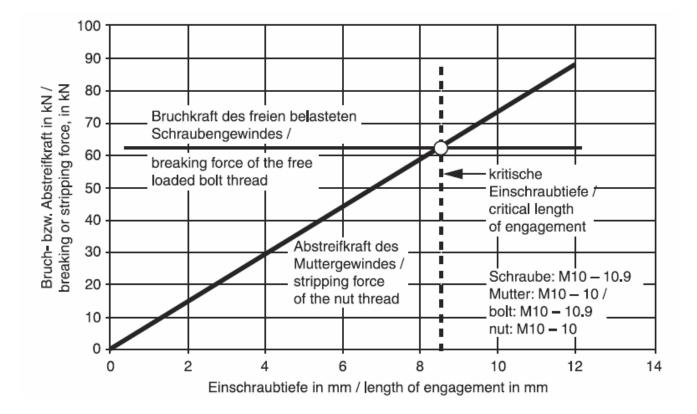
The maximum surface pressure is obtained with highest load (assembly or working state) and smallest area.

For the area the exact geometry is used, considering chamfers etc.

R11 minimum length of engagement

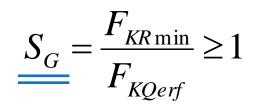
 $m_{erf} \leq m_{vorh, eff}$

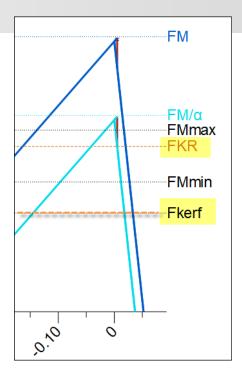
m_{eff,min} required length of engagement m_{vorh, eff} actual length of engagement


The maximum tensile force of the bolt must be less than the critical stripping force of the internal or bolt thread.

 $F_{mS} \leq \min(F_{mGM}; F_{mGS})$

 $\begin{array}{ll} F_{mS} & & Breaking force of the free loaded bolt thread \\ F_{mGM} & & Stripping force of nut or internal thread \\ F_{mGS} & & Stripping force of bolt thread \end{array}$


R11 minimum length of engagement



The effective length of engagement is determined by the bolt length minus clamping length and thread chamfer.

R12 safety against slipping

- **S**_G safety against slipping
- F_{KRmin} residual clamp load at the interface considering relief by F_{PA} and after embedding
- F_{KQerf} minimum required clamp load at the interface for transmitting a transverse load and / or a torque by friction grip

The calculation is not applicable, if there is no transverse working load.

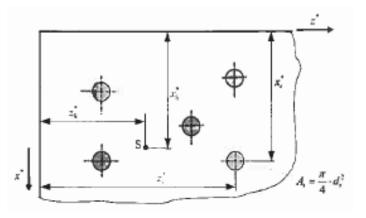
R12 safety against shearing

 $\underline{S_A} = \frac{\tau_B}{\tau_{Q\max}} \ge 1.1$

- **S**_A safety against shearing
- $\tau_{\rm B}$ shearing strength, is determined with the "shearing strength ratio" in table 5.5/2 (values for ratio of shearing strength / tensile strength)
- τ_{Qmax} shearing stress in the bolt cross section at the interface

Overloading resp. overcoming the static friction at the interface may lead to shearing or bolt-bearing.

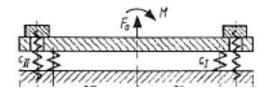
For the determination of the shearing stress the full transverse load F_{Qmax} is used.


$$M_{A} = M_{G} + M_{K}$$
$$M_{A} = F_{Mzul} [0.16 \cdot P + 0.58 \cdot d_{2} \cdot \mu_{Gmin} + \frac{D_{Km}}{2} \cdot \mu_{Kmin}]$$

$$\begin{array}{lll} M_A & \mbox{tightening torque} \\ M_G & \mbox{thread friction moment} \\ M_K & \mbox{head friction moment} \\ P & \mbox{pitch of the thread} \\ \mu_{Gmin} & \mbox{(minimum) friction coefficient in the thread} \\ \mu_{Kmin} & \mbox{(minimum) friction coefficient in the bolt head area} \end{array}$$

The tightening torque required for torque-controlled tightening can be taken from tables in VDI 2230 (with utilization 90%).

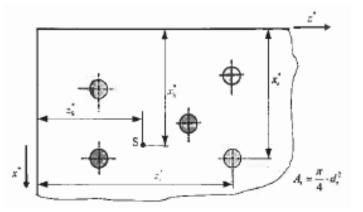
Part 2 considers multi bolt joints which is applicable for general geometries and bolt positions.

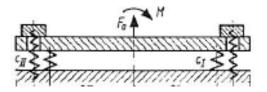


Rigid body mechanics

Elasto mechanics

FE method


The plates are rigid, the bolts are not preloaded


The plates are pliable, the bolts are not preloaded The plates and bolts are considered with their real properties.

The guideline VDI 2230, part 2 (draft status) provides a calculation procedure for load distribution (axial forces, bending, torque) in multi-bolted joints, consideriung also the individual bolt positions and bolt sizes.

For the load distibution the plates are rigid (inelastic), but the bolts are flexible.

Rechengang bei Axialkräften

Eine Axialkraft angreifend im Schwerpunkt:

Axialkraft angreifend ausserhalb des Schwerpunktes erzeugt ein zusätzliches Biegemoment:

Eine schief angreifende Kraft wird in die Komponenten Axialkraft und Querkraft aufgeteilt:

$$F_{A\max} = \frac{F_B}{n_S}$$

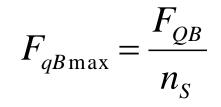
$$F_{A\max} = F_{A(Moment)} + \frac{F_B}{n_S}$$

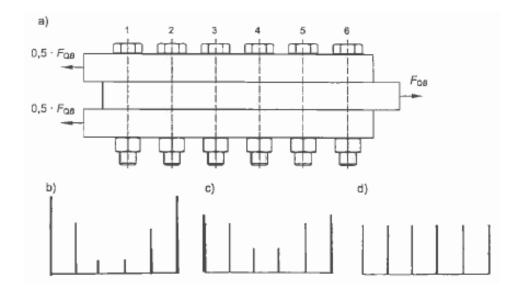
$$F_A = F_B \cdot \sin \alpha$$
$$F_Q = F_B \cdot \cos \alpha$$

Rechengang bei Biegemomenten

Berechnung des Schwerpunktes der Schraubenverbindung, mit Berücksichtigung der Positionen und Schraubenflächen

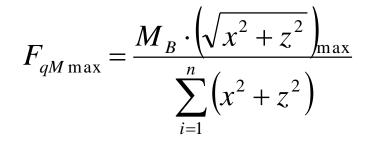
Berechnung der neutralen Faser (rote Linien, durch Schwerpunkt der Linien) und Flächenträgheitsmomente I_{xx}, etc. bezüglich der Schwerpunktachse, also mit dem Satz von Steiner umgerechnet

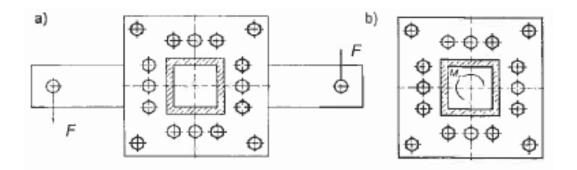

Berechnung der resultierenden Schraubenkraft F_{Amax} über:


$$F_{A\max} = \frac{M_x \cdot A \cdot z_i}{I_{xx}} + \frac{M_z \cdot A \cdot z_i}{I_{zz}}$$

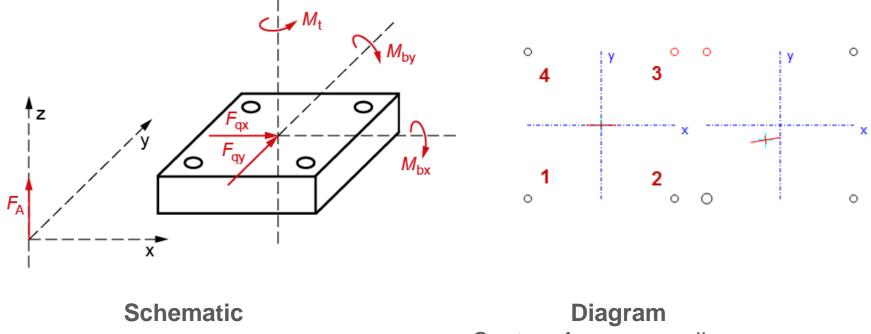
Rechengang bei Querkräften

Mit dem Starrkörperansatz ist die Verteilung der Querkraft pro Schraube gleichmässig:

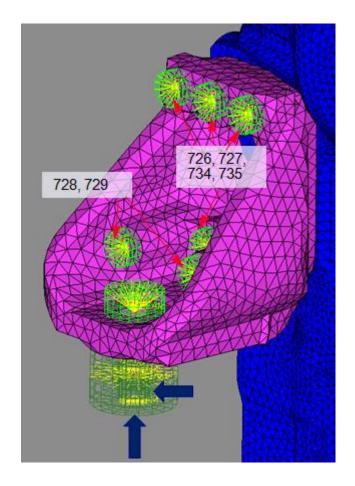




Rechengang bei Torsionsmoment


Für die äussersten Schrauben gilt bei einer proportionalen Aufteilung der Reaktionskräfte:

Definition of Moments and Forces in KISSsoft (Right hand rule)


Center of area: cyan lines Neutral axis: red lines

With FE analysis the real plate geometries and loads can be considered.

This is a big advantage compared to the VDI guideline and becomes more and more applied in the industry.

The guideline VDI 2230 part 2 provides 4 classes of FE modelling procedures and explains how to integrate the results into the calculation of VDI 2230 part 1.

Integration of FEM results into VDI 2230 (part 2)

The classes I - IV have an increasing accuracy regarding FE modelling. Hence, also the effort of modelling increases.

Modelling class I is very simplified, i.e. no modelling of bolt. Classes II & III show a good ratio of effort and benefit. Class IV is very detailed, i.e. also the thread is modelled.

Modelling class	I.	Ш	ш	IV
effort of modelling	low	medium	medium	high
modelling of bolt	none	1-dim	3-dim (simplified)	3-dim (detailed)
contact in interface	none	possible	modelled	modelled
pretension	none	possible	modellled	modelled

Integration of FEM results into VDI 2230 (part 2)

According to the modelling accuracy the factors can be used from FE instead of VDI 2230, part 1.

Red: the parameters are taken from VDI 2230 part 1, tests, ...

Yellow: the parameters are from FE modelling

Parameter	I	II	III	IV
δ_s				
$\delta_{p} \left(\delta_{p}^{*} \delta_{p}^{**} \right)$				
n				
α_{K}				
f _Z				
$\Delta F_{\text{therm.}}$				
μ				

Add bolt types

In the database "bolts:Type" additional bolts (length, diameter, ..) can be added. The data are saved in a Ascii file.

Add strength classes

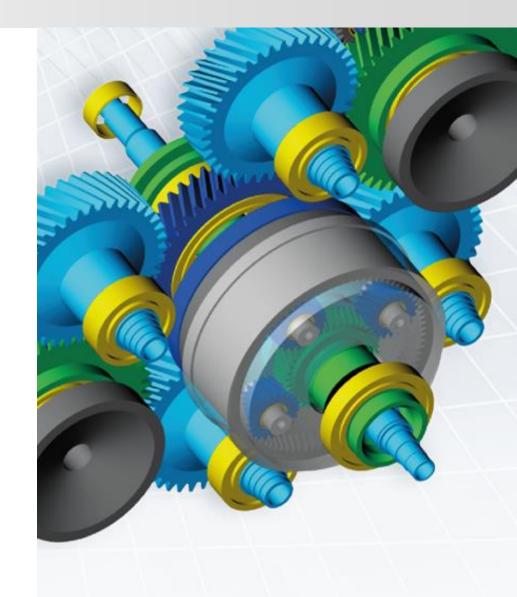
In the database "bolts: Strength class" additional materials (Aluminium, casting,..) can be added. Bolts / pins Bolts: Bore Bolts: Nuts Bolts: Strength class Bolts: Thread type Bolts: Tightening factor Bolts: Type Bolts: Washer

Bolt geometries in database

O]] 🕨 Computer 🕽	Windows (C:)	 Program Files (x8 	36) 🕨 KISSsot	ft 03-2018 🕨 dat	
IDOrderLabel100501 Own Input10010Cylindrical screw wit101703 Hexagon socket is100204 Hexagon head screw100305 Hexagon head screw100406 Cylinder head stud100607 Hexagon cap screw100708 Hexagon cap screw100809 Hexagon cap screw1009010 Hexagon cap screw1010011 Hexagon cap screw1010011 Hexagon cap screw1010012 Hexagon cap screw1010112 Hexagon cap screw1012013 Square bolts ASME1013014 Hex bolts ASME B181014015 Heavy hex bolts AS1015016 Hex cap screws ASI1016017 Heavy hex screws ASI	able M040TYP th socket head bolt DI ad cap screw with low with shank (A B) DI with slot DIN EN ISO 3 with slot DIN EN ISO 3 With slot DIN EN ISO 3 Display entry ID 10010 Status active Label Cy	Filter N EN ISO 4762:20 head DIN 7984:20 N EN ISO 4014:20 DIN EN ISO 4017 207: 1994 https://www.com/com/ pin/second/com/ 207: 1994	Display only active da Display only active da 004 009 001 7:2001 MENISC 8765:2001 Created by: KI Changed by: th socket head bolt DIN	Atasets V Name DIN EN I DIN EN I DIN EN I DIN EN I DIN EN I DIN EN I DIN EN I	Name M03A-005.dat M04-000.DAT M04-001.DAT M04-001a.DAT M04-002.DAT M04-003.DAT on: on:	
Search the shown columns for	Unit in use m	4-001.DAT				Close

Bolt geometries in database – new entry (1/2)

1. □ Image: State with folder, or KIS Ssoft/ext/dat folder Organize ▼ Include in library ▼ Share with ▼ New folder Image: Favorites □ Name □ Date modified Type Image: Desktop □ My Bolt Table.DAT 02.03.2018 09:33 DAT File	 Copy existing table to ext/dat folder Create new database entry, connect to the new table
Image: Construction Image: Construction Imag	 Enter own bolts into the new table (see next page)
ID Order Label Label ID Order Label Label Label ID170 3 Hexagon sor ID ID ID020 4 Hexagon sor ID ID ID040 6 Cylindrical se ID ID ID040 6 Cylindrical se ID ID ID040 7 Hexagon car Label Star ID040 6 Cylindrical se ID ID ID040 7 Hexagon car ID Hexagon car ID Hexagon car 10 Hexagon car ID Hexagon car ID Hexagon car 10 Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car ID Hexagon car <td>atus aktiv Changed by: on: bel My Custom Bolts</td>	atus aktiv Changed by: on: bel My Custom Bolts


KISSsoft

Bolt geometries in database – new entry (2/2)

	IST m04s.nc	orm								
INPUT I	Contraction of the second s									
INPUT r										
	m04s.1 TRE				04 a 1a m 0	4	4			
DATA	m04s.11, m	1045.al, m	J4s.da, m	J4S.OW, MO	J4S.K, MU	4s.sw, mu	45.aK			
DAIA	1.6	0.35	2.5	1.05	1.6	2	2.72	1.6	1.5	3
	1.6	0.35	3	1.05	1.6	2	2.72	1.6	1.5	3
	5	0.8	40	18	5	5.7	8.03	5	4	8.5
	5	0.8	45	23	5	5.7	8.03	5	4	8.5
Database	5	0.8	50	28	5	5.7	8.03	5	4	8.5
	6	1	10	3	6	6.8	9.38	6	5	10
	6	1	12	3	6	6.8	9.38	6	5	10
	6	-1	16	2	6		Define bolt			
	6			meter d	5.0000	mm	General Thread	Bolt shank		
	K Define bolt		-				General mireau	Bore sharik		
	General Three	ead Bolt shank	Bolt length	1	50.0000	mm	Diameter of red	uced shank [mm]	Reduced shar	nk length [mm]
							1	5.0	000	28
	Label **					fine bolt	and -		×	
	Diameter of bolt	bead	d _k	8,5000 mm						_
	Diameter of bore		G.	0.0000 1111			1111			
100 000 M		r of bearing surface	dw	8.0300 mm		eral Thread	Bolt shank			
Own Input	Outside diameter	2000 20			Ger	neral Thread			•	
Own Input	Outside diameter	r of bearing surface of bearing surface	d _w	8.0300 mm	Ger	ndard Standard thre			•	
Own Input	Outside diameter	r of bearing surface of bearing surface nollow bolt)	d _w d₂	8.0300 mm 5.7000 mm	Ger Sta Lab	ndard Standard three		p	▼ 0.8000 mm	ſ
Own Input	Outside diameter Inside diameter d Bore diameter (h	r of bearing surface of bearing surface nollow bolt) ts	dw ds di	8.0300 mm 5.7000 mm 0.0000 mm	Ger Stai Lab Pitc	ndard Standard three		P	• 0.8000 mm 22.0000 mm	6
Own Input	Outside diameter Inside diameter o Bore diameter (h Width across flat	r of bearing surface of bearing surface nollow bolt) ts	d _w d _a dı s	8.0300 mm 5.7000 mm 0.0000 mm 4.0000 mm	Ger Stal Lab Pitc Thr	ndard <mark>Standard thre</mark> el <mark>M5</mark> h		50000 L		
Own Input	Outside diameter Inside diameter o Bore diameter (h Width across flat	r of bearing surface of bearing surface nollow bolt) ts	d _w d _a dı s	8.0300 mm 5.7000 mm 0.0000 mm 4.0000 mm	Ger Stal Lab Pitc Thr	ndard Standard three el M5 h ead length ik angle		50000 L	22.0000 mm	

KISSsoft

Thank you for your attention!

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

