

KISSsoft Exercise Shaft-Hub Connections 00

Cylindrical interference fit

KISSsoft AG A Gleason Company Rosengartenstr. 4, 8608 Bubikon Switzerland T. +41 55 254 20 50 F. +41 55 254 20 51 info@KISSsoft.com www.KISSsoft.com

Sharing Knowledge

1 Document information

1.1 Table of content

1	Docu	ument information	2
	1.1 1.2	Table of content	2 2
2	Exer	cise Shaft-hub connections: Cylindrical interference fit	3
	2.1 2.2	Summary Tasks	3 3
3 4 5	Give Solu Ques	n data	4 5 6
	5.1 5.2 5.3 5.4 5.5 5.6	Question 1Question 2Question 3Question 4Question 5Question 6	5 6 7 8 9

1.2 Document change record

Revision	Author	Date	Remarks
0	HD	2008	Original document
1	HD	2017	Updated screenshots
2	RP	2022-06-15	Updated to new template

2 Exercise Shaft-hub connections 00: Cylindrical interference fit

2.1 Summary

In an automotive transmission, a helical gear is connected to the shaft by means of an interference fit. The torque transmitted results in an axial and radial force (due to the pressure and helix angle).

2.2 Tasks

- 1. Enter the data given. How can you find out the value to be given for "bending moment"?
- 2. Decide on the tolerances to be used such that the torque can be transmitted safely. How can you find out suitable tolerances?
- 3. Check whether the safety factors are ok. Why are there three safety factors?
- 4. Find out what would be the maximum torque that could be transmitted by the connection (if axial and radial force remained the same).
- 5. Find out what the maximum torque would be if you need to achieve a minimal safety factor against sliding of 1.40 exactly.
- 6. Find out how the shaft must be cooled / the gear to be heated to assemble the gear on the shaft

3 Given data

Nominal Axial for Radial fo Bending Speed: Applicat	l torque: rce: orce: g moment: tion factor:	300 Nm 2000 N 300 N ? 3000 rpm 1.25
Surface: Coeff. o	s: f friction:	N6 0.12
Nominal Shaft bo Hub:	l diameter: pre:	50mm solid shaft The gear consists of two parts. The part for the tooting has a width of 30mm and a pitch diameter of 90mm. The part for the synchronizer has a width of 25mm and an outer diameter of 70mm
Material	s: Hub/Gear: Shaft:	18CrNiMo7 34CrNiMo6

Temperatures:

At assembly:	30°C
At operation:	65°C for shaft, 75°C for hub

4 Solution

Start cylindrical interference fit module:

Enter all data given:

Cylindrical in	iterference	fit														
Operating	data															
Nominal to	rque	т	300.0000	Nm	+							Axial force	F _A	2000.0000	N	+
Bending m	oment	Me	0	Nm								Radial force	FR	300.0000	N	
Application	n factor	Ka	1.25		1							Speed	n	3000.0000	1/min	
Multiple	e interferend	e fit														
External pr	ressure on l	hub (mir	n/mid/max) p _{min} /	pm/pmax					N/mm²						Define	
Geometry																
Diameter o	ofjoint	Dr	50.0000	mm	+							Length of Interference fit		55.0000	mm	+
Inside dian	meter, Shaf	t Di	0.0000	mm								Manufacturing tolerance Shaft				+
Outside dia	ameter, Huł	D _a	79.0312	mm								Manufacturing tolerance Hub				٠
Materials a	and surface	roughne	ess													
Shaft	34 CrNiMo	6 (1), 1	Through hardene	d steel,	alloyed,	through hardened					- +	N6 Rz=4.8 (Grinding)	•	Rz	4.80	μm
Hub	18CrNiMo	7-6, Cas	se-carburized ste	el, case	-hardene	ed					• +	N6 Rz=4.8 (Grinding)	•	Rz	4.80	μm
Temperatu	ires									Coefficients of friction						
Service ter	mperature s	haft					θ∎	65.00	00 °C	in circumferential direction				μ	0.12	200
Service ter	mperature h	hub					θε	75.00	00 °C	in axial direction				μ	0.12	200

To enter several hub diameters / hub widths, press next to Outside diameter, Hub D. 0.0000 mm There you can enter different diameters / widths. Once you press "OK", an equivalent diameter / hub combination will be calculated.

ľ	<	Define va	riable outside o	diameter ×
		Diameter [mm]	Length [mm]	
	1	90.0000	30.0000	
	2	70.0000	25.0000	
		6		
				÷ - ×
			ОК	Cancel

5 Questions

5.1 Question 1

To enter the bending moment, calculate it from axial force and half the pitch diameter. To do this, you can use the formula editor. Press right mouse click into the field for "Bending Moment" and calculate it (be careful to consider dimensions correctly):

Operating data		
Nominal torque	т	300.0000 Nm 🖊
Bending moment Application factor	Мв [Кд [vFormula input:
Multiple interference	fit	2000*90/1000/2

5.2 Question 2

To have the software propose you suitable tolerances, press sizing button next to tolerance input. A list with possible combination appears, choose suitable combination:

K	Choose sufficient tolerance	<
Shaft s5 t5 u5 u6 u6	Hub H5 H5 H5 H6 H7	
	OK Cancel	

5.3 Question 3

Now that all data is given, press or F5 to get the results. Three sets of results are shown, for nominal dimensions, for highest shaft diameter/smallest hub inner diameter, for highest hub inner diameter/smallest shaft diameter. Note that the flag "Results are consistent" is now active.

N	Results			x
Stress: Elastic only				
	medium	minimum	maximum	
Safety against sliding	4.39	2.65	6.12	
Safety against fracture, Shaft	14.98	24.13	10.86	
Safety against fracture, Hub	6.03	9.68	4.38	
Safety against yield point, Shaft	11.98	19.30	8.69	
Safety against yield point, Hub	4.27	6.85	3.10	
Embedding 7.6800 µm				
1				

Note that you will get the below message, which tells you that the contact stress between hub and shaft is actually higher during assembly of connection compared to operation (as in operation, hub will heat up more and expand and it will also expand due to centrifugal forces from rotation)

	1	ï	
	Т	1	
	÷	1	
_	``	. [

The working pressure is smaller than the pressure after mounting $(64.0320 \text{ N/mm}^2 < 71.4344 \text{ N/mm}^2)$. Please check the calculation also with speed zero and ambient temperature.

5.4 Question 4

Use the sizing button next to torque input to reverse calculate a maximum possible torque:

Operating data				
Nominal torque	т	667.5773	Nm	
Bending moment	Me	90.0000	Nm	
Application factor	Ka	1.2500		1

If the interference fit is now calculated again, you will find the below safety factors:

N	Results			
Stress: Elastic only				
	medium	minimum	maximum	
Safety against sliding	1.99	1.20	2.77	
Safety against fracture, Shaft	14.98	24.13	10.86	
Safety against fracture, Hub	6.03	9.68	4.38	
Safety against yield point, Shaft	11.98	19.30	8.69	
Safety against yield point, Hub	4.27	6.85	3.10	
Embedding 7.6800 µm				

Note the smallest safety factor of 1.20!

5.5 Question 5

Above, we have a resulting safety factor of 1.20. Obviously, this safety factor was used to reverse calculate the maximum torque transmittable. So, this value was used as a target value. To change the target value, go to the module specific settings and change it there:

Report Graphics Extrage Help	
ical interference fit	
ating data	
nal torque T 667.5773 Nm 🛀	
ing moment M∎ 90.0000 Nm Size No	
ration factor K. 1 2500	
Calculation of joining temperature (lateral interference fit)	
Depends on joint diameter, per thousand of df (acc. DIN 7190)	1
Constant mounting clearance of	0.1000 mm
Temperature of shaft for joining	20.0000 °C
Required safety against sliding	1.4
Required safety against yield point (shaft/hub)	1.0000 1.0000

Then, in a second step, recalculate the maximal torque transmittable again by pressing the sizing button next to the input field for nominal torque. You will then get a lower value as the required safety factor is higher:

Cylindrical interference	fit			
Operating data				
Nominal torque	т	571.8381	Nm	
Bending moment	MB	90.0000	Nm	
Application factor	Ka	1.2500		
	0			

Now, re-run the calculation and you will find the safety factor of 1.40 in the results

	Results	2	2	x
Stress: Elastic only			•	
	medium	minimum	maximum	
Safety against sliding	2.32	1.40	3.23	
Safety against fracture, Shaft	14.98	24.13	10.86	
Safety against fracture, Hub	6.03	9.68	4.38	
Safety against yield point, Shaft	11.98	19.30	8.69	
Safety against yield point, Hub	4.27	6.85	3.10	
Embedding 7.6800 µm				
		&		
		T		

5.6 Question 6

Additional results, like temperatures for assembly (cooling of shaft or heating up of hub) are shown in the report. Get the report using the report symbol or press F6

