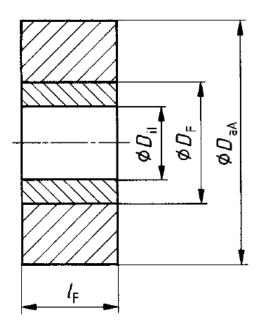

Cylindrical interference fit DIN 7190

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

1 / 20.06.2022 / Cylindrical interference fit / © KISSsoft AG. All Rights Reserved.

Usage


The connection is achieved by joining shaft and hub where the outer diameter of the shaft is bigger than the inner diameter of the hub.

Interference fits are used to connect:

- Planetary pins in the planetary carrier
- Connection of main shaft to gearbox (shrink disk)
- Connection of gears on shafts
- Connection of sleeves on shafts
- Bearings on shafts (to some extent)

Types of joining process:

- Longitudinal press fit (longitudinal pressing)
- Transverse press fit (warming and/or cooling parts)

Transmittable torque and axial force

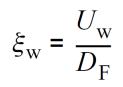
- Loads are transmitted by friction on the circumference of the shaft.
- An interface contact pressure and friction are required.
- Transmittable torque *T*

$$T = \frac{\pi}{2} D_{\rm F}^2 l_{\rm F} \nu_{\rm ru} \, \frac{p}{S_{\rm r}}$$

Transmittable axial force F_{ax}

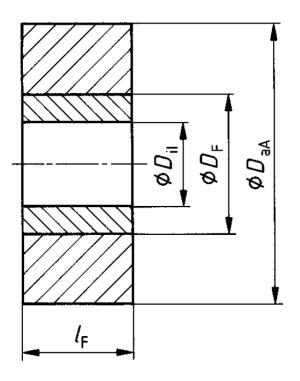
$$F_{\rm ax} = \pi D_{\rm F} l_{\rm F} v_{\rm rl} \frac{p}{S_{\rm r}}$$

- Symbols
 - D_F Nominal diameter
 - *L*_F Length of connection
 - *v*_{ru} Coefficient of friction circumferential
 - $V_{\rm rl}$ Coefficient of friction longitudinal
 - *p* Interface contact pressure
 - $S_{\rm r}$ Safety factor against sliding


Calculation of interference fits (DIN 7190)

- Calculation case a) Given interface pressure p
- Calculation case b) Given oversize U (KISSsoft)

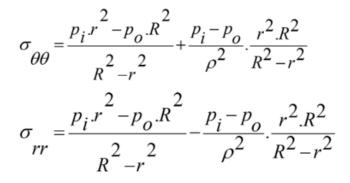
$$U_{\rm W} = U - 0,8 (R_{\rm zA} + R_{\rm zI})$$

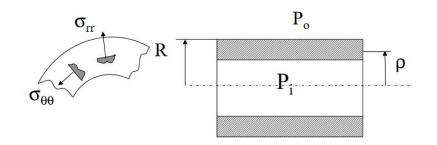

Effective Fit Smoothing oversize oversize (embedding)

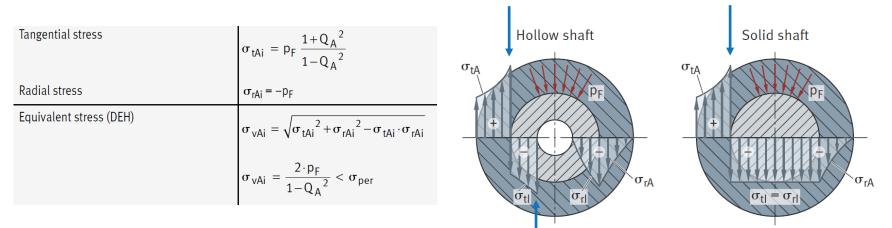
Auxiliary values

referential effective oversize

$$Q_{\rm I} = \frac{D_{\rm iI}}{D_{\rm F}} \qquad Q_{\rm A} = \frac{D_{\rm F}}{D_{\rm aA}} \qquad K = \frac{E_{\rm A}}{E_{\rm I}} \left(\frac{1 + Q_{\rm I}^2}{1 - Q_{\rm I}^2} - \mu_{\rm I} \right) + \frac{1 + Q_{\rm A}^2}{1 - Q_{\rm A}^2} + \mu_{\rm A}$$


To guarantee the reference safety against plastic strain S_p


	Hollow shaft	Full shaft and $E_I = E_A = E$, $\mu_I = \mu_A = \mu$
Shaft	$\xi_{\rm w} \le K \frac{1 - Q_{\rm I}^2}{\sqrt{3} S_{\rm PI}} \frac{R_{\rm eLI}}{E_{\rm A}}$	$\xi_{\rm w} \le \frac{4 R_{e {\rm LI}}}{\sqrt{3} (1 - Q_{\rm A}^2) S_{\rm PI} \cdot E}$
Hub	$\xi_{\rm w} \le K \frac{1 - Q_{\rm A}^2}{\sqrt{3} S_{\rm PA}} \frac{R_{\rm eLA}}{E_{\rm A}}$	$\xi_{\rm w} \le \frac{2 R_{\rm eLA}}{\sqrt{3} S_{\rm PA} \cdot E}$
Interface pressure	$p = \frac{\xi_{\rm w} E_{\rm A}}{K}$	$p = \frac{1 - Q_{\rm A}^2}{2} E \xi_{\rm w}$

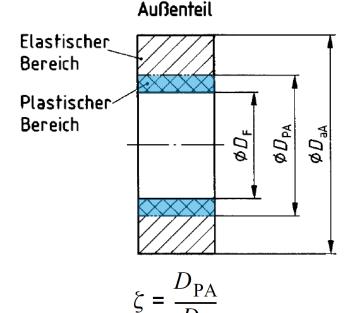

Stress profiles for purely elastically stressed interference fits

Radial and tangential stresses

Stresses on the inner edge of the hub (outer part) critical

critical

S. Wartzack, Technical Pocket Guide. Schaeffler Technologies AG & Co. KG, 2021.


KISSsoft

critical

Calculation of elastic-plastic stressed interference fits

- The following limitations apply for calculation according to DIN 7190:
 - I. The inner part (shaft) must be full $(Q_i = 0)$
 - II. Both, inner and outer parts (shaft and hub) must have the same elasticity constants, i.e. $E_1 = E_A = A$ and $\mu_1 = \mu_A = \mu$
- In an outer part an interior plasticized zone up to diameter D_{PA} is formed, while a full inner part is either purely elastic or full-plastic stressed.
- An elastic-plastic design of the interference fit is not possible if inner part becomes fully plastic while the outer part is still subjected to purely elastic stress, i.e.:

$$\left(1-Q_{\rm A}^2\right)\frac{R_{\rm eLA}}{2} \ge R_{\rm eLI}$$

 ς ... specific plasticity diameter

Interface pressure for elastic-plastic stressed interference fits

Specific plasticity diameter ς_{zul} of the outer part is calculated from transcendental eq.:

$$2 \ln \zeta - (Q_{A}\zeta)^{2} + 1 - \sqrt{3} \frac{p}{R_{eLA}} = 0$$

$$p = \frac{p_{PI}}{S_{PI}} \text{ for } \frac{p_{PI}}{S_{PI}} \le \frac{p_{PA}}{S_{PA}}$$

$$p = \frac{p_{PA}}{S_{PA}} \text{ for } \frac{p_{PA}}{S_{PA}} < \frac{p_{PI}}{S_{PI}}$$

Referential effective oversize ξ_w must be within:

Purely elastically
stressed outer part
$$\frac{2}{\sqrt{3}} \frac{R_{eLA}}{E} < \xi_w < \frac{2}{\sqrt{3}} \zeta_{zul}^2 \frac{R_{eLA}}{E}$$
 Elastic-plastic
stressed outer part

 $q_{\rm A}$

Interface pressure

$$p = \frac{R_{eLA}}{\sqrt{3}} \left[1 + 2 \ln \zeta - (Q_A \zeta)^2 \right]$$

 $\frac{q_{\mathrm{PA}}}{2} \leq 0.3$ where Less than 30% of outer ring can be plasticized:

$$\frac{q_{\rm PA}}{q_{\rm A}} = \frac{(\zeta^2 - 1)Q}{1 - Q_{\rm A}^2}$$

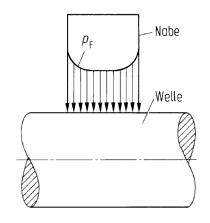
Consideration of centrifugal expansion due to rotating speed

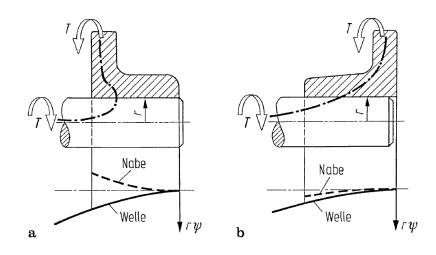
Operating data									
Nominal torque	Tn	400.0000	Nm	+	Axial force	FA	200.0000	Ν	+
Bending moment	Мв	0.0000	Nm		Radial force	F _R	0.0000	Ν	
Application factor	Ka	1.0000		1	Speed	n	0.0000	1/min	

Consideration of temperature differences

Temperatures Service temperature shaft θ _B 20.0000 °C	Service te	mperature hub θ _a	20.0000 °C	
	Service te		20.0000 C	
Longitudinal interference fit				
Coefficients of friction ratio (press on)	µ₀/µ₃		1.3000	i
Coefficients of friction ratio (loosening)	µı/µа		1.6000	1
		Shaft	Hub	
Assembly temperature (press on)	θм	20.0000	20.0000 °C	J
Calculation of joining temperature (lateral interference fit)				
Depends on joint diameter, per thousand of df (acc. DIN 719		1	۲	
Constant mounting clearance of			0.1000 mm	0
Temperature of shaft for joining			20.0000 °C)

Stepped hubs				C Define variable outside diameter X				
				Diameter [mm]	Length [mm]			
Geometry			1	90.0000	20.0000			
Diameter of joint	D _f 60.0000 mm	+	2	100.0000	20.0000			
Inside diameter, Shaft	D ₁ 10.0000 mm		3	110.0000	10.0000			
Outside diameter, Hub	D _a 90.0000 mm							
Length of Interference fit	l 50.0000 mm	-						
						÷ = ×		
					ОК	Cancel		

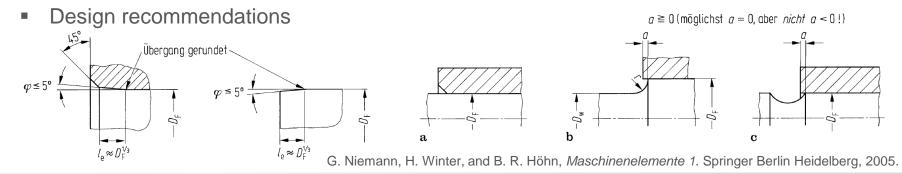

Simulation of external pressure acting on the hub (via multiple interference fit)


Multiple interference fit										
		Minimum I	Medium Maxi	mum	Define					
Hub external pressure	Pamin/Pm/Pamax	54.2604	76.3209 9	1.8704 N/mm ²						
K Define multiple interference fit										
dı [mm]	d _o [mm]	Tolerance type	Tolerance field insid	Allowance inside (u	Tolerance field outs	Allowan				
10.0000	60.0000	Tolerance field		0.0000/0.0000	s6	72.00				
60.0000	90.0000	Tolerance field	Н6	19.0000/0.0000	s6	93.00				

Practical considerations

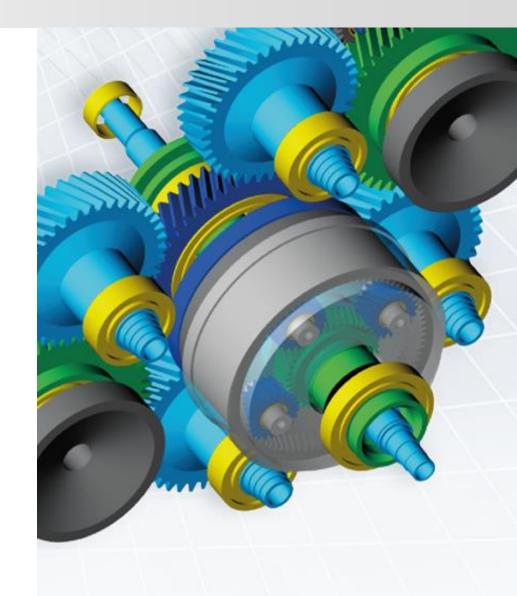
- Pressure is not evenly distributed along length of connection. Some areas may have some movement between shaft and hub while the whole connection does not yet move → risk of fretting corrosion and weakening of shaft, especially under fatigue loads.
- At the ends of the hub, the contact pressure typically increases, resulting in a stress raiser on the shaft.
- Torque should be passed through the whole hub (Figure b).
- If necessary, hub material should be torsionally softer than shaft material.

G. Niemann, H. Winter, and B. R. Höhn, Maschinenelemente 1. Springer Berlin Heidelberg, 2005.



Practical considerations

- The interference fit should not be combined with a keyway/key as the keyway will seriously disturb the stress state.
- Highest torque can be transmitted using a solid shaft and a thick hub
- If the load is introduced from one side, an uneven torque distribution along the length of the connection will result. Therefore, it does not make sense to use very long connections. Recommended ratio between width/diameter
 - Alternating torsion load $L_{\rm F}/D_{\rm F} = 0.5...1.0$
 - Torsion and bending, static
 - Alternating bending


 $L_{\rm F}/D_{\rm F} = 0.5...1.0$ $L_{\rm F}/D_{\rm F} = 1.0...1.5$

 $L_{\rm F}/D_{\rm F}$ = 1.5...2.0

Thank you for your attention!

KISSsoft AG, A Gleason Company Rosengartenstrasse 4, 8608 Bubikon, Switzerland T. +41 55 254 20 50, info@KISSsoft.AG, www.KISSsoft.AG

