

KISSsoft Exercise 2

Bevel Gear 02

Strength rating of a bevel gearset

T. +41 55 254 20 50 F. +41 55 254 20 51 info@KISSsoft.AG www.KISSsoft.AG

Sharing Knowledge

1 Purpose of exercise

In this exercise, we will do a strength rating of a Face milling bevel gearset, using the ISO 10300:2014

- General setting for strength calculation
- Root bending strength: root radius optimization, cutter head size, tooth thickness modification factor
- Scuffing: running-in, lubrication, phosphating
- Tooth flank fracture: increase hardening depth
- Load spectra applied

2 Task

Use Sample: 12 Bevel (GEMS Example 2 FM).

2.1 Analysis of general settings for strength

2.1.1 Effective face width

The current effective face width is entered with 0.92. This is an optimized value. Enter the value of 0.85, which is the default value and check the effect on the safety numbers.

2.1.2 Profile crowning

The setting for load distribution is selected with 'low'. Change the setting to 'high' and check the effect on the safety numbers.

2.1.3 Life factor

The life factor ZNT, YNT are defined with the reduction of the number to 0.85 at number of cycles at 10^10. This is a conservative calculation. Change the setting to 1 at number of cycles at 10^10 and check the effect on the safety numbers.

2.1.4 Mounting factor

The mounting factor is selected as 1.1. As a sample, all the bevel gearsets are tested under full load. This results in a mounting factor of 1. Enter the new number and check the effect on the safety numbers.

Change	Previous flank safety		Previous root safety		New flank safety		New root safety	
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2	G1	G2	G1	G2
Change effective face width beff from 0.92 to 0.85 (default value)	0.97	1.0	1.352	1.308				
Change profile crowning from low to high	0.97	1.0	1.352	1.308				
Change life factors ZNT, YNT from 0.85 to 1	0.97	1.0	1.352	1.308				
Change mounting factor from 1.1 to 1.0	0.97	1.0	1.352	1.308				

2.2 Root bending strength improvement

2.2.1 Edge radius of blade

As a sample, in the GEMS software, the edge radius at pinion was reduced from 1.5 mm to 1.2 mm. Enter the data in KISSsoft and check the effect on the safety number.

2.2.2 Cutter head size

The cutter head size of the bevel gearset is to be selected smaller, to find a benefit in root bending strength. Select the cutter head size = 3" and check the effect on the safety number. Is the cutter head size still within the application limits, so that manufacturing problem can be avoided?

2.2.3 Tooth thickness modification

The tooth root strength between pinion and ring gear should be balanced by modified tooth thickness factor xsm1 and xsm2 for equal life. Check in the report, what lifetime is achieved with the current settings and balance the life time by modifying the tooth thickness modification factor xsm1 and xsm2 (note that the backlash has to remain).

Change	Previous root	safety	New root safety		
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2	
Edge radius of blade	1.352	1.308			
Cutter head size from 3.75" to 3"	1.352	1.308			
Tooth thickness modification for equal life	1.352	1.308			

2.3 Scuffing

2.3.1 Running-in

Activate resp. de-activate the running-in option and check the effect on the safety number.

2.3.2 Lubrication

Increase the load stage scuffing test number from 12 to 13 and check the effect on the safety number.

2.3.3 Phosphating

The ring gear is phosphated to have higher resistance against scuffing. Enter the corresponding number in KISSsoft and check the effect on the safety number.

2.3.4 Crowning

Enter profile crowning and check the effect on the safety number.

Change	Previous scuffing safety	New scuffing safety
	Gearset	Gearset
Running-in was active / inactive.	1.703	
Load stage scuffing test from 12 to 13	1.703	
Phosphating of ring gear	1.703	
Profile crowning added	1.703	

2.4 Tooth flank fracture

2.4.1 Hardening depth

Do a calculation with a recommended hardening depth value of 0.66 mm. Increase the hardening depth to 0.9 mm and check the effect on the flank fracture safety number.

Change	Previous toot flank	New toot flank fracture
	fracture safety	safety
	Gearset	Gearset
Increased the hardening depth from 0.66 to 0.9 mm	0.932	

3 Solution

3.1 Analysis of general settings for strength

3.1.1 Effective face width

K Details for root and flank strength calculation		?	×
\Box Allow simplified calculation according to DIN 3990/ISO 6336 (for plastics)			
Profile modification	Without (only running-in)	~	Ç
Life factors Z_{NT},Y_{NT} according to ISO 6336	Normal (reduction to 0.85 at 10 ¹⁰ cycles)	~	
Modification of S-N curve (Woehler line) in the range of endurance limit	according standard (ISO, AGMA or DIN)	~	
Consider load bins with 0% frequency	Yes	~	
Tooth flank with load spectra	Consider all negative load bins as positive	~	
Tooth root with load spectra	Consider all negative load bins as positive	~	
Profile crowning	low (automotive gears)	~	
Limited pitting is permitted	No		
Effective facewidth (ISO 10300) calculated with beff/b		0.85	2
	OK	Ca	ncel

Change	Previous flank Pr safety sa		Previous root safety		New flank safety		New root safety	
Pinion (G1), Ring gear (G2)	G1	G1 G2 G1 G2		G1	G2	G1	G2	
Change effective face width beff	0.97	1.0	1.352	1.308	0.903	0.934	1.302	1.26
from 0.92 to 0.85 (default value)		0.07						

3.1.2 Profile crowning

C Details for root and flank strength calculation		?	×
□ Allow simplified calculation according to DIN 3990/ISO 6336 (for plastics)			
Profile modification	Without (only running-in)	~	Ç
Life factors $Z_{\text{NT}},Y_{\text{NT}}$ according to ISO 6336	Normal (reduction to 0.85 at 10 ¹⁰ cycles)	~	
Modification of S-N curve (Woehler line) in the range of endurance limit	according standard (ISO, AGMA or DIN)	~	
Consider load bins with 0% frequency	Yes	~	
Tooth flank with load spectra	Consider all negative load bins as positive	~	
Tooth root with load spectra	Consider all negative load bins as positive	~	
Profile crowning	high (industry gears)	~	
Limited pitting is permitted		~	
Effective facewidth (ISO 10300) calculated with beff/b		0.9200	
	C	КС	Cancel

Change	Previous flank		Previous root		New flank		New root safety						
	safety safety sa		fety s		afety		safety		ty safety				
Pinion (G1), Ring gear (G2)	G1	G2 G1 G2		G1	G2	G1	G2						
Change profile crowning from low	0.97	1.0	1.352	1.308	0.96	0.994	1.334	1.29					
to high													

3.1.3 Life factor

K Details for root and flank strength calculation		?	×
□ Allow simplified calculation according to DIN 3990/ISO 6336 (for plastics)			
Profile modification	Without (only running in)	~	Ç
Life factors Z_{NT},Y_{NT} according to ISO 6336	With optimum quality and experience (always 1.0)	~	
Modification of S-N curve (Woehler line) in the range of endurance limit \riangle	according standard (ISO, AGMA or DIN)	~	
Consider load bins with 0% frequency	Yes	~	
Tooth flank with load spectra	Consider all negative load bins as positive	~	
Tooth root with load spectra	Consider all negative load bins as positive	~	
Profile crowning	low (automotive gears)	~	
Limited pitting is permitted	No	~	
Effective facewidth (ISO 10300) calculated with b _{eff} /b	0.9	200	
	ОК	C	Cancel

Change	Previous flank Previou safety safety		Previous root safety		New flank safety		New root safety	
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2	G1	G2	G1	G2
Change life factors ZNT, YNT	0.97	1.0	1.352	1.308	1.08	1.08	1.538	1.455
from 0.85 to 1								

3.1.4 Mounting factor

Reference profile 🗗	Manufacturing 🗗	Tolerances 🗗	Modifications 🖻	ī × Stren	gth 🗗 🛛	Factors 🗗
General factors						
Application factor	K _A			1.1	© 000	Z-Y Factors
Dynamic factor	K _v			1.0)244	
Transverse load factor	K _{Ha}				051 🗆	
Mounting factor (Load distri	ibution modifier) $K_{H\beta-be}$			1.0	© 0000	
Alternating bending factor ((mean stress influence c	oefficient)				
Method		Predefined			~	
Alternating bending factor	Y _M	1.	.0000	1.(© 0000	

Change	Previous flank Previ safety safety		Previous root safety		New flank safety		New root safety	
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2	G1	G2	G1	G2
Change mounting factor from 1.1	0.97	1.0	1.352	1.308	1.012	1.047	1.48	1.43
to 1.0								

3.2 Root bending strength improvement

3.2.1 Edge radius of blade

Change	Previous root safety		New root safe	ety
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2
Edge radius of blade	1.352	1.308	1.295	1.308

3.2.2 Cutter head size

Basic data t	🖻 Process 🗗	Reference profile	Manufacturing 🗗	Tolerances 🗗	Modification
Manufacturing pro	Cess				
	Gear 1 Gear 2	2			
Manufacture type	generate ~ formate	~			
Process	lapped	~			
Manufacturer's dat	a for spiral teeth				
Manufacturing F	ace Milling <mark>(</mark> single indexing n	nethod) ~ Ç	Cutter radius	r _{c0} 3.0 in	\leftrightarrow \leftrightarrow

The cutter head size is still within the recommended range of 0,95 ..1,1. No problems in manufacturing are to be expected. Note, that the recommended blank angles slightly change.

Change	Previous root safety		New root safe	ty
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2
Cutter head size from 3.75" to 3"	1.352	1.308	1.416	1.370

3.2.3 Tooth thickness modification

Currently, the tooth root strength is limited by the ring gear with 685 hours. This is also the system service life.

Profile shift coefficient	Xhmp	0 5185	-0 5185	4	\leftrightarrow
Tooth thickness modification factor	r x _{sm}	0.0317	-0.0484		
Quality (ISO 17485)	Q	6	6	J.	
15 Service life, damage					
Required safety for tooth root		[S _{Fmin}]	1.40	1	
Required safety for tooth flank		[S _{Hmin}]	1.00)	
Required service life		[H]	20000.00)	
Service life (calculated with required safeties)	c				
System service life (h)		[H _{att}]	685		
			Gear 1	Gea	ar 2
Tooth root service life (h)		[H _{Fatt}]	3545		685.2
Tooth flank service life (h)		[H _{Hatt}]	6722		2.064e+04

After (manually) balancing the values for tooth thickness modifications xsm1 and xsm2, the system service life is increased to 1580 hours, which is more than factor 2.3 of the previous lifetime.

Profile shift coefficient	Xhmn	0.5185	-0.5185	÷	\leftrightarrow
Tooth thickness modification facto	X _{sm}	0.0187	-0.0354		
Quality (ISO 17485)	Q	6	6	بر	,

Change	Previous root safety		New root safe	ty
Pinion (G1), Ring gear (G2)	G1	G2	G1	G2
Tooth thickness modification for equal life	1.352	1.308	1.332	1.331

3.3 Scuffing

3.3.1 Running-in

K Details for scuffing calc	ulation		?	×
Peak overload fac	tor according	g to DNV 41.2 (for short period tor	que peaks)
Define mass temp	erature			
Lubricant factor	XL	1.0000		
Toothing is well run	in	No ~		
Relative structural fa	ctor X _{WrelT}	1.0000		Ç
		Gear 1 Gear 2		
Oil level	h _{Oil}	0.0000	mm	Ç
			КС	ancel

Change	Previous scuffing safety	New scuffing safety		
	Gearset	Gearset		
Running-in was active / inactive	1.703	1.279		

3.3.2 Lubrication

K Define lubricant	:
☑ Own Input	
Comment	ISO-VG 220
Oil/ Grease	Oil
Density oil	ρ 0.8950 kg/dm³
Nominal kinematic viscosity at 40°C	V ₄₀ 220.0000 mm ² /s
Nominal kinematic viscosity at 100°C	V ₁₀₀ 17.5000 mm ² /s
Lower limit service temperature	θ _{min} -15.0000 °C
Upper limit service temperature	θ _{max} 120.0000 °C
Lubricant base	Mineral oil base
Test procedure scuffing	FZG Test A/8 3/90: ISO 1463: >
Load stage scuffing test	13
Test procedure micropitting	No info about micropitting tes
k factor for pressure-viscosity coefficient (AGMA 925)	k 0.0105 [©]
s factor for pressure-viscosity coefficient (AGMA 925)	s 0.1348

Change	Previous scuffing safety	New scuffing safety
	Gearset	Gearset
Load stage scuffing test from 12 to 13	1.703	1.986

3.3.3 Phosphating

K Details for scuffing calculation			? >		K Information		×
Peak overload factor accord	ing to DNV 41.2 (for sh	nort period torque pe	eaks)		According to DIN 3990 (part 4), ISO	/TS 6336-	20/-21 ^
Define mass temperature					Material	Xw	
Lubricant factor X		1.0000			Through hardened steel	1.00	_
Toothing is well run in	Yes				Phosphated steel	1.25	
Relative structural factor X _{Wrell}		1.25	Ç		Copper-plated steel	1.50	_
				-1	Nitrided steel	1.50	
	Gear 1	Gear 2			Case hardened steel		
Oil level h _{oil}		0.0000 mm	ç		- with low austenite content	1.15	
		ОК	Cancel		- with normal austenite content	1.00	~
							Close

Change	Previous scuffing safety	New scuffing safety		
	Gearset	Gearset		
Phosphating of ring gear	1.703	2.017		

3.3.4 Crowning

The profile crowning is modified with the setting in 'Details for root and flank strength calculation'.

□ Allow simplified calculation according to DIN 3990/ISO 6336 (for plastics)					
Profile modification	Without (only running-in)	~ Ç			
Life factors $Z_{\text{NT}},Y_{\text{NT}}$ according to ISO 6336	Normal (reduction to 0.85 at 10 ¹⁰ cycles)	~			
Modification of S-N curve (Woehler line) in the range of endurance limit	according standard (ISO, AGMA or DIN)	~			
Consider load bins with 0% frequency	Yes	~			
Tooth flank with load spectra	Consider all negative load bins as positive	~			
Tooth root with load spectra	Consider all negative load bins as positive	~			
Profile crowning	high (industry gears)	~			
Limited pitting is permitted		~			
Effective facewidth (ISO 10300) calculated with beff	/b	0.9200			
		OK Cancel			

Change	Previous scuffing safety	New scuffing safety
	Gearset	Gearset
Profile crowning added	1.703	2.066

3.4 Tooth flank fracture

3.4.1 Hardening depth

Activate the hardening depth calculation. Enter the values from the special report 'Proposals for hardening depth' into KISSsoft (MQ steel is applied here).

×

?

Rep	port	Graphics	Script	Extras	Help
	Gen	erate			F6
	Spe	cial reports			×

Drawing uata
Proposals for hardening depth
Convice life calculation
Sizing of torque Tooth flank fracture
Settinas

Propositions ISO 6336 part 5 (p.21-23)

Recommended case depth to avoid pitting

	[Ehtmax]	1.87	mm
	[Ehthlopt]	0.70	
Recommended case depth to avoid case-crushing			
Quality ML	[EhtcML]	1.00	mm
Quality MQ/ME	[EhtcMQ]	0.66	mm

Calculation method

Factors, root, flankBevel gear ISO 10300:2014, Method B1			~	×				
Scuffing ISO/TS 10300-20:2021				\sim	+			
Tooth flank fractu	re		ISO/DTS 10	300-4 (draft)			~	+
K Details for flank frac	ture calcu	lation				?	×	
Gear 1 Gear 2								
		min	max	min	max			
Hardening depth	t ₅₅₀	0.6600	0.6600	0.6600	0.6600	mm	Ô	
Hardening depth	t ₄₀₀	0.0000	0.0000	0.0000	0.0000	mm		-
Hardening depth	t ₃₀₀	0.0000	0.0000	0.0000	0.0000	mm		
Core hardness	HV_{core}	342.0000		342.0000		HV		
Hardness curve		ISO/TS 6336-4 N	4ethod C1 v	ISO/TS 6336-4	Method C1 🛛 🗸			
					ОК	Са	ncel	

Enter an increased hardening depth of 0.9 mm. The safety number increases from 0.932 to 1.123.

Change	Previous toot flank	New toot flank fracture
	fracture safety	safety
	Gearset	Gearset
Increased the hardening depth from 0.66 to 0.9 mm	0.932	1.123