

KISSsoft Exercise 3

Bevel Gear 03

Sizing of a Face Hobbing hypoid gearset

T. +41 55 254 20 50 F. +41 55 254 20 51 info@KISSsoft.AG www.KISSsoft.AG

Sharing Knowledge

1 Purpose of exercise

In this exercise, we will design a Face hobbing bevel gearset, then change it into a hypoid gearset. It is an industrial application, lapped.

- Sizing of a new bevel gear set
- Selection of the size of cutter head and check the influence to the root strength
- Comparison of a bevel gear to a hypoid gear regarding strength and efficiency
- Optimization of hypoid gear set using fine sizing

2 Task

Initial data:	
Bevel type:	Face hobbing, lapped
Material:	16 MnCr5
Oil:	ISO VG 68, oil bath
Gear quality:	8 as per ISO 17485
Hand of spiral:	Pinion left hand (LH)
Rating standard:	ISO 10300:2014
Power:	P = 24 kW
Speed (at pinion):	n = 3'000 upm
Required lifetime:	5000 h
Operation mode:	Drive side
Application factor:	K _A = 1.1
Mounting factor:	$K_{H\beta-be} = 1.1$

Manufacturing process: Ring gear non-generating

2.1 Step 1

Do a first sizing using the functionality "Rough sizing". Check the strength at the bevel gear set (without offset).

Sizing data:

The required safeties are $S_{Fmin} = 1.4$ and $S_{Hmin} = 1$.

Transmission ratio:	3.9
Gear set ratios:	$b/m_n = 10, R_e/b = 3.0$
Spiral angle:	30°

Cutter head size: Sizing with ratio of involute / outer cone distance = 0.9

2.2 Step 2

Choose the cutter head from the list of ISO 23509. The smallest possible cutter head is to be preferred, due to the positive V/H (E/P) behavior and benefit to the root strength.

Compare the root safety SF in ISO 10300, if the bigger cutter head is taken instead of the smaller cutter head.

2.3 Step 3

Change the calculation to hypoid and add the offset. Define the blanks. Compare the strength and the blanks in 2D graph "System".

The offset is 15% of the ring gear outer diameter.

2.4 Step 4

Optimize the hypoid design with the "fine sizing" functionality. Check for an optimal solution with same ring gear diameter.

Sizing data:

Offset: between 10% and 25% of ring gear outer diameter

The focus of the optimization should be on pinion root strength and efficiency (method acc. to WECH). Second priority are high contact ratio (for noise) and low axial forces on pinion.

3 Solution

3.1 Step 1

Input of initial data

In tab "Basic data", select the following gear geometry settings:

Basic data 🛛 🗗	Pr	ocess	8	Referer	nce profile	e 🗗	Manufac	turing	ć
Configuration									
Type Uniform depth, fig 3 (Face Hobbing, Klingelnberg) $\lor \diamond 0$									
Normal pressure angle	a _n					20.00	00 °		
Gear 1		heli	x left han	id (spiral t	eeth)		\sim	ç	
Mean spiral angle Gear 2	2 β _{m2}					30.00	00 °	+	
					7		_		
Quality (ISO 17485)		Q		8			8		

Figure 3.1-1 Choose "Uniform depth" in tab «Basic data», set hand of spiral and enter the gear quality number.

Select the gear material and use a lubricant as shown below:

Material and	lubrication					
Gear 1	Case-hardening steel		16 MnCr 5 (1), case-hardened, ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm <hr(<math="" display="inline">\sim</hr(>	•	b.	
Gear 2	Case-hardening steel		16 MnCr 5 (1), case-hardened, ISO 6336-5 Figure 9/10 (MQ), Core hardness >=25HRC Jominy J=12mm <hr(<math="" display="inline">\sim</hr(>	•	ł.	
Lubrication	Oil bath lubrication	+	Oil: ISO-VG 68	•	2	+

Figure 3.1-2 Gear material and lubrication in tab «Basic data»

Define the load data and select the rating method in tab "Strength".

Note that the working flank is initially defined as right flank, which results in 'Coast' condition. Change the working flank gear 1 to 'left flank'.

Basic data 🖻 Process	🗗 Reference profile 🗗 Manufacturing 🗗	Toleran	nces 🗗 Strength 🗗 × 🛛 Factors 🗗
Rating			
Driving gear	Gear 1 v		Reference gear Gear 1 ~
Working flank Gear 1	left flank ~	Ô	Reference speed $ n_1 $ 3000.0000 1/min \bigcirc
Sense of rotation, looking at tip of Gear 1	Іеп	Ô	Reference torque T ₁ 76.3944 Nm
Operation	Drive side		Reference power P 24.0000 kW ○ ↔
Required service life	5000.0000 h	← -	+
Calculation method			
Factors, root, flank	Bevel gear ISO 10300:2014, Method B1 $\qquad \sim$	۶	Subsurface fatigue DNV 41.2 ~ +
Scuffing	according to calculation method ~	+	Reliability No calculation ~
Tooth flank fracture	No calculation ~	+	

Figure 3.1-3 Select rating method ISO 10300:2014 B1, enter power and speed and set required life to 5000 h. Also change the working flank to 'left flank'.

In the tab "Factors", the application factor and mounting factor are defined.

c data 🗗 🛛 Process 🗗	Reference profile 🗗	Manufacturing	8	Tolerances	8	Strength	ð×	Factors	Ð
General factors					_				
Application factor	KA				1.100	Q Q	Z-'	Y Factors	
Dynamic factor	Kv				1.000				
Transverse load factor	Кна				1.976	2			
Mounting factor (Load distribution m	odifier) K _{Hβ-be}				1.100	0 ©			
Figure 2.1.4 Cot mounting footor	1 10 and the	application facto	~ IZ .	1 10					

Figure 3.1-4 Set mounting factor $K_{H\beta\text{-}be}$ = 1.10 and the application factor K_A = 1.10.

Before sizing of the bevel gear, the required safeties are to be entered.

Under 'calculation – settings' the required safeties are defined. For an easier display, the option 'Safeties are not depending on size' may be used.

K Module specific settings					
General Sizings Calculations Tooth form	Safety factors Differe	ntial gears Con	ntact analysis	Diagrams	2D/3D geometry
General					
Configuration		Safeties not d	lepending on siz	ze	~
Required safeties for metal (ISO/DIN)					
Root safety	S _{Fn}	in			1.4000
Flank safety	SHI	in			1.0000
Safety against scuffing (integral temperature)	Ssn	in			1.8000
Safety against scuffing (flash temperature)	S _{B n}	in			2.0000
Safety against tooth flank fracture	SFF	in			1.2000

Figure 3.1-5 Enter the required safety factors in 'module specific settings'.

Now we start using the rough sizing function. Enter the required ratio and the mean helix angle at 30°, press "Calculate" and "Accept".

K Rough sizing macrogeometry		_		×		
Transmission ratio	u	3.9				
Ratio of facewidth to normal module	e b/m _{mn}	10.0000		\leftarrow		
Ratio of cone distance to facewidth	R _e /b	3.0000		\leftarrow		
Mean spiral angle Gear 2	β_{m2}	30.0000	0	\leftarrow		
Mean normal module	m _{mn}	2.9414	mm 🗆			
Number of teeth, Gear 1	Z1	11				
Facewidth Gear 2	b ₂	30.1504	mm 🗆			
Outer pitch diameter Gear 2	d _{e2}	175.2588	mm 🗆			
Accept Calculate Cancel						

Figure 3.1-6 Use of rough sizing function to get a first proposal for the bevel gear set

You will see that the pinion number of teeth is reasonable (a reasonable range is e.g. 11-16). In the tab "Process", set up the manufacturing process for ring gear as formate (non-generating) and use the sizing button for the cutter head.

Basic data 🗗 Process 🗗	Reference profile 🗗 🛛 Manu	ufacturing	Tolerances	8	Strength 🗗	×
Manufacturing process						
Gear 1 Gear 2 Gear 1 Gear 2 generate formate process						
Manufacturer's data for spiral teeth						
\Box Adopt data from Klingelnberg machines list		Cutter	radius r _{c0}	45.225	56 mm ←	€ →
Manufacturing Face Hobbing (continuing inde	xing method) 🗸 🖓	Numb	per of blade groups z_0	1.000	00	
		Cutter	r module mo	3.200	00 mm 🗆	
K Convert cutter radius		? X				
\odot Cutter radius according to r_{c0}/R_{m2}						
\circledast Cutter radius according to involute/R_{e2}						
Ratio involute/outer cone distance	0.9000	Ô	Cutton and the	-	40.2070	
Cutter radius r.o.	49.2070 mm			r _{c0}	49.2070	nim
			Number of blade grou	ps z ₀	1.0000	
	Accept Calculate	Cancel	Cutter module	m ₀	3.2000	mm 🗆

Figure 3.1-7 Setting of manufacturing process and sizing of cutter head with ratio involute / outer cone = 0.9.

The strength results can be checked now. Due to the simplified sizing algorithm, deviations from the required safety values may show up.

Results (basic calculation)						
General						
Transverse contact ratio	[ε _α]	1.234				
Overlap ratio	[ε _β]	1.387				
Operation mode	Drive side	Drive side				
Components		Gear 1	Gear 2			
Outer tip diameter (mm)	[d _{ae}]	52.984	176.090			
Root safety	[S _F]	2.336	1.979			
Flank safety	[S _H]	0.997	1.040			
Safety factor for scuffing (flash-temp)	[S _B]	4.118				

Figure 3.1-8 Bevel gear safety factors after rough sizing.

See file Exercise-Bevel-03-sizing_hypoid_face_hobbing-v2200-jl-public_Step-1.Z70

3.2 Step 2

The cutter head size is the nominal radius, on which the blades of the tool are arranged. They come with standard sizes.

Figure 3.2-1 Face Hobbing cutter head. Radius is defined from center to the cutting edge of the blade.

In tab "Process", the info graphic for the tools according to the ISO 23509 is available.

Face Hobbing						
Two-bla (outer and inner	de cutter blade per group)	Face Milling				
Cutter radius r _{c0} , mm	Number of blade groups, z ₀	Cutter diameter, 2·r _{co} , in				
30	7	2.50				
51	7	3.25				
64	11	3.50				
64	13	3.75				
76	7	4.375				
76	13	5.00				
76	17	6.00				
88	11	7.50				
88	17	9.00				
88	19	10.5				
100	5	12				
105	13	14				
105	19	16				
125	13	18				
150	17	/				
175	19	/				
		mm				
		500, 640, 800, 1000				

Figure 3.2-2 Available cutter radius of standardized cutter heads

We choose the smallest possible cutter due to the centralized contact pattern behaviour under load.

Cutter radius	r _{c0}	51 mm	\leftarrow	\leftrightarrow
Number of blade group	Z ₀	7		
Cutter module	m ₀	3.2000 mm		

Figure 3.2-3 Enter the cutter radius and the number of blades in tab "Process".

With this we have finalized the design and manufacturing of a bevel gear set (not a hypoid yet). Rerun the calculation to find:

Results (basic calculation)			
General			
Transverse contact ratio	[ε _α]	1.2	234
Overlap ratio	[ε _β]	1.3	387
Operation mode	Drive side		
Components		Gear 1	Gear 2
Outer tip diameter (mm)	[d _{ae}]	53.994	179.447
Root safety	[S _F]	2.459	2.083
Flank safety	[S _H]	0.996	1.039
Safety factor for scuffing (flash-temp)	[S _B]		3.919

Figure 3.2-4 Gear rating results with above manufacturing data.

See file Exercise-Bevel-03-sizing_hypoid_face_hobbing-2200-jl-public_Step-2.Z70

3.3 Step 3

We now compare a bevel gear set with a hypoid gear set. For the current bevel design, we find the efficiency according to calculation method "Wech". To calculate the efficiency of the bevel gear set with the method "Wech", we deactivate the scuffing calculation and select the method "Wech" in the module specific settings.

14.2 Gear power loss and coefficient of frie	ction	
Calculation according to	Wech	
Coefficient of friction	[µm]	0.073
The coefficient of friction μ_m can vary deper	nding on calculation method.	
Compound velocity (m/s)	[νΣ]	6.951
Loss factor	[iiv]	0.100
Gear power loss (kW)	[PVZ]	0.314
Meshing efficiency (%)	[ŋz]	98.691

Figure 3.3-1 Report, information on efficiency, for bevel gear set

Now we enter an offset of 15% (here 27 mm) to calculate a corresponding hypoid gear set. We now observe a massive increase in root safety due to the hypoid offset. Due to the increased diameter of the pinion, lower forces result.

		Gear 1	Gear 2	[Deta	ils
Number of teeth	z	11	43			
Facewidth	b	37.0000	30.7253	mm		
Profile shift coefficient	X _{hmn}	0.4300	-0.4300		\leftarrow	\leftrightarrow
Tooth thickness modification factor	X _{smn}	0.0650	-0.0650			
Quality (ISO 17485)	Q	8	8		۶	
Shaft angle	2		00.000	0		
Hypoid offset	а		27.0000	mm		

Figure 3.3-2 Enter the hypoid offset of 27mm.

Calculation method			
Factors, root, flank	Hypoid gears ISO 10300:2014, Method B1	~	۶
Scuffing	130/13 10300-20.2021	~	+
Tooth flank fracture	No calculation	~	+

Figure 3.3-3 Change the calculation method in the tab 'strength' from bevel results for hypoid gear set.

Results (basic calculation)			
General			
Transverse contact ratio	[8-]	1	080
Overlap ratio	[20]	1.	682
Operation mode	Drive side		
Components		Gear 1	Gear 2
Components Outer tip diameter (mm)	[d _{ae}]	Gear 1 75.106	Gear 2 180.137
Components Outer tip diameter (mm) Root safety	[d _{ae}] [S _F]	Gear 1 75.106 4.687	Gear 2 180.137 3.889
Components Outer tip diameter (mm) Root safety Flank safety	[d _{ae}] [S _F] [S _H]	Gear 1 75.106 4.687 1.567	Gear 2 180.137 3.889 1.634

Figure 3.3-4 Increased safety numbers for hypoid gear set for root bending strength and contact stress.

In the 2D system graphics we can now clearly see the increased size of the pinion:

Figure 3.3-5 Increased pinion size for hypoid gear set.

The hypoid gear shows a drop in efficiency and the scuffing safety (see report):

14.2 Gear power loss and coefficient of frictio	n	
Calculation according to	Wech	
Coefficient of friction	[µm]	0.027
The coefficient of friction μ_m can vary depending	g on calculation method.	
Compound velocity (m/s)		0.046
Gear power loss (kW)	[PVZ]	0.456
Meshing efficiency (%)	[ŋz]	98.101

Check the influence factor of limit pressure angle under additional data.

Geometry							
Mean normal modul	e m _{mn}		:	3.0423 r	nm 🤇	\rightarrow C	
Outer pitch diameter	r Gear 2 d _{e2}		178	8.6005 n	nm 🦉	0	
Normal pressure and	gle a _n		2	0.0000 °	,	+	
Gear 1	K Additional data for	hypoid gears			?	×	
Mean spiral angle G	Pressure angle o	n drive side	a _{dD}	20.000	00 °		
Angle modification (Pressure angle o	n coast side	0.10	20.000	<u>0</u> 0		
	Influence coeffic	ient for limit pressure angl	f _{alim}	1.000)0		
			(Ж	Canc	el	

Figure 3.3-6 Input of influence coefficient of limit pressure angle under 'additional data for hypoid gears'

Also, check the several pressure angles such as 'design (nominal) pressure angle', 'generated pressure angle' and 'effective pressure angle' in the report.

5.2 Basic data		
		Gear 1 Gear 2
No modification at tip circle		
Overall transmission ratio	[itot]	-3 909
Gear ratio	[u]	3.909
Nominal pressure angle - drive side (°)	[αdD]	20.0000
Nominal pressure angle - coast side (°)	[adC]	20.0000
Limit pressure angle (°)	[alim]	-1.3577
Generated pressure angle - drive side (°)	[ɑnD]	18.6423
Generated pressure angle - coast side (°)	[anC]	21.3577
Effective pressure angle - drive side (°)	[aeD]	20.0000
Effective pressure angle - coast side (°)	[aeC]	20.0000

Figure 3.3-7 Report, information on pressure angles

See file Exercise-Bevel-03-sizing_hypoid_face_hobbing-v2200-jl-public_Step-3.Z70

3.4 Step 4

Use the fine sizing function e.g. as shown below. Set parameters as considered suitable and run the fine sizing function:

Fine sizing macrogeometry						_	
Conditions I Conditions II	Conditions III Posu	lts Graphic					
Conditions 1	Conditions III Resul	its Graphic			1		
Maximum number of solutions	;			2000			
Nominal transmission ratio	i			3.9000			
Deviation from nominal ratio	Δi			5.0000	%		
Input		Outer pitch diam	eter Gear 2	~			
		Minimum	Maximum	Step			
Outer pitch diameter Gear 2	d _{e2}	178.6005	178.6005	0.0000			
Normal pressure angle	a _n	19.0000	21.0000	1.0000	0		\checkmark
Mean spiral angle Gear 2	β _{m2}	25.0000	35.0000	5.0000	•		\checkmark
Facewidth Gear 2	b ₂	30.7253	30.7253	0.0000	mm		
Profile shift coefficient Gear 1	Xhmn1			0.0000]		
Hypoid offset	a	17.0000	44.5000	5.0000	mm		\checkmark
Number of teeth, Gear 1	Z ₁	9	14	1			\checkmark
		Gear 1		Gear 2			
Fix number of teeth	z		10	37]		
Update fine sizing inputs							
	A	ccept Contact a	analysis Calcula	te Delete	Save	Restore	Clos

Figure 3.4-1 Possible input data for fine sizing functionality.

We find a high number of possible solutions. We use the graphical representation of the solutions to compare the efficiency and root strength of pinion depending on the hypoid offset.

Figure 3.4-2 Minimum root and flank safety are shown, depending on the varying number of teeth on pinion.

Look at (as a function of offset, number of teeth on pinion, etc.)

- Efficiency
- Flank strength
- Gear (and hence bearing) forces (radial and axial, typically pinion bearings are more critical)

It is up to the design engineer to now select a suitable solution.

See file Exercise-Bevel-03-sizing_hypoid_face_hobbing-v2200-jl-public_Step-4.Z70